|
39 | 39 | class CustomizedDetector1D(_Detector1D):
|
40 | 40 | """Detector derived from a user-given function and parameters.
|
41 | 41 |
|
42 |
| - This is an univariate detector. When it is applied to a multivariate time |
43 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
44 |
| - independently. All parameters can be defined as a dict object where key- |
45 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
46 |
| - model parameter for that series. If not, then the same parameter will be |
47 |
| - applied to all series. |
48 |
| -
|
49 | 42 | Parameters
|
50 | 43 | ----------
|
51 | 44 | detect_func: function
|
@@ -133,13 +126,6 @@ class ThresholdAD(_Detector1D):
|
133 | 126 | This detector compares time series values with user-given thresholds, and
|
134 | 127 | identifies time points as anomalous when values are beyond the thresholds.
|
135 | 128 |
|
136 |
| - This is an univariate detector. When it is applied to a multivariate time |
137 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
138 |
| - independently. All parameters can be defined as a dict object where key- |
139 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
140 |
| - model parameter for that series. If not, then the same parameter will be |
141 |
| - applied to all series. |
142 |
| -
|
143 | 129 | Parameters
|
144 | 130 | ----------
|
145 | 131 | low: float, optional
|
@@ -178,13 +164,6 @@ class QuantileAD(_Detector1D):
|
178 | 164 | of historical data, and identifies time points as anomalous when values
|
179 | 165 | are beyond the thresholds.
|
180 | 166 |
|
181 |
| - This is an univariate detector. When it is applied to a multivariate time |
182 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
183 |
| - independently. All parameters can be defined as a dict object where key- |
184 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
185 |
| - model parameter for that series. If not, then the same parameter will be |
186 |
| - applied to all series. |
187 |
| -
|
188 | 167 | Parameters
|
189 | 168 | ----------
|
190 | 169 | low: float, optional
|
@@ -239,13 +218,6 @@ class InterQuartileRangeAD(_Detector1D):
|
239 | 218 | historical data, and identifies time points as anomalous when differences
|
240 | 219 | are beyond the inter-quartile range times a user-given factor c.
|
241 | 220 |
|
242 |
| - This is an univariate detector. When it is applied to a multivariate time |
243 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
244 |
| - independently. All parameters can be defined as a dict object where key- |
245 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
246 |
| - model parameter for that series. If not, then the same parameter will be |
247 |
| - applied to all series. |
248 |
| -
|
249 | 221 | Parameters
|
250 | 222 | ----------
|
251 | 223 | c: float, or 2-tuple (float, float), optional
|
@@ -317,13 +289,6 @@ class GeneralizedESDTestAD(_Detector1D):
|
317 | 289 | follow an approximately normal distribution. Please only use this detector
|
318 | 290 | when this assumption holds.
|
319 | 291 |
|
320 |
| - This is an univariate detector. When it is applied to a multivariate time |
321 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
322 |
| - independently. All parameters can be defined as a dict object where key- |
323 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
324 |
| - model parameter for that series. If not, then the same parameter will be |
325 |
| - applied to all series. |
326 |
| -
|
327 | 292 | [1] Rosner, Bernard (May 1983), Percentage Points for a Generalized ESD
|
328 | 293 | Many-Outlier Procedure,Technometrics, 25(2), pp. 165-172.
|
329 | 294 |
|
@@ -412,13 +377,6 @@ class PersistAD(_Detector1D):
|
412 | 377 | This detector is internally implemented as a `Pipenet` object. Advanced
|
413 | 378 | users may learn more details by checking attribute `pipe_`.
|
414 | 379 |
|
415 |
| - This is an univariate detector. When it is applied to a multivariate time |
416 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
417 |
| - independently. All parameters can be defined as a dict object where key- |
418 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
419 |
| - model parameter for that series. If not, then the same parameter will be |
420 |
| - applied to all series. |
421 |
| -
|
422 | 380 | Parameters
|
423 | 381 | ----------
|
424 | 382 | window: int, optional
|
@@ -575,13 +533,6 @@ class LevelShiftAD(_Detector1D):
|
575 | 533 | This detector is internally implemented as a `Pipenet` object. Advanced
|
576 | 534 | users may learn more details by checking attribute `pipe_`.
|
577 | 535 |
|
578 |
| - This is an univariate detector. When it is applied to a multivariate time |
579 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
580 |
| - independently. All parameters can be defined as a dict object where key- |
581 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
582 |
| - model parameter for that series. If not, then the same parameter will be |
583 |
| - applied to all series. |
584 |
| -
|
585 | 536 | Parameters
|
586 | 537 | ----------
|
587 | 538 | window: int, optional
|
@@ -723,13 +674,6 @@ class VolatilityShiftAD(_Detector1D):
|
723 | 674 | This detector is internally implemented as a `Pipenet` object. Advanced
|
724 | 675 | users may learn more details by checking attribute `pipe_`.
|
725 | 676 |
|
726 |
| - This is an univariate detector. When it is applied to a multivariate time |
727 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
728 |
| - independently. All parameters can be defined as a dict object where key- |
729 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
730 |
| - model parameter for that series. If not, then the same parameter will be |
731 |
| - applied to all series. |
732 |
| -
|
733 | 677 | Parameters
|
734 | 678 | ----------
|
735 | 679 | window: int, optional
|
@@ -886,13 +830,6 @@ class AutoregressionAD(_Detector1D):
|
886 | 830 | This detector is internally implemented aattribute `pipe_`.nced
|
887 | 831 | users may learn more details by checking attribute `pipe_`.
|
888 | 832 |
|
889 |
| - This is an univariate detector. When it is applied to a multivariate time |
890 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
891 |
| - independently. All parameters can be defined as a dict object where key- |
892 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
893 |
| - model parameter for that series. If not, then the same parameter will be |
894 |
| - applied to all series. |
895 |
| -
|
896 | 833 | Parameters
|
897 | 834 | ----------
|
898 | 835 | n_steps: int, optional
|
@@ -1042,13 +979,6 @@ class SeasonalAD(_Detector1D):
|
1042 | 979 | This detector is internally implemented aattribute `pipe_`.nced
|
1043 | 980 | users may learn more details by checking attribute `pipe_`.
|
1044 | 981 |
|
1045 |
| - This is an univariate detector. When it is applied to a multivariate time |
1046 |
| - series (i.e. pandas DataFrame), it will be applied to every series |
1047 |
| - independently. All parameters can be defined as a dict object where key- |
1048 |
| - value pairs are series names (i.e. column names of DataFrame) and the |
1049 |
| - model parameter for that series. If not, then the same parameter will be |
1050 |
| - applied to all series. |
1051 |
| -
|
1052 | 982 | Parameters
|
1053 | 983 | ----------
|
1054 | 984 | freq: int, optional
|
@@ -1084,12 +1014,7 @@ class SeasonalAD(_Detector1D):
|
1084 | 1014 |
|
1085 | 1015 | """
|
1086 | 1016 |
|
1087 |
| - _default_params = { |
1088 |
| - "freq": None, |
1089 |
| - "side": "both", |
1090 |
| - "c": 3.0, |
1091 |
| - "trend": False, |
1092 |
| - } |
| 1017 | + _default_params = {"freq": None, "side": "both", "c": 3.0, "trend": False} |
1093 | 1018 |
|
1094 | 1019 | def __init__(
|
1095 | 1020 | self,
|
|
0 commit comments