|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "0", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Grok Use Case: Image Inputs\n", |
| 9 | + "### This notebook demonstrates how to use Grok for analyzing and reasoning over image inputs, specifically focusing on software architecture diagrams." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": null, |
| 15 | + "id": "1", |
| 16 | + "metadata": {}, |
| 17 | + "outputs": [], |
| 18 | + "source": [ |
| 19 | + "import base64\n", |
| 20 | + "import os\n", |
| 21 | + "import textwrap\n", |
| 22 | + "\n", |
| 23 | + "from dotenv import load_dotenv\n", |
| 24 | + "\n", |
| 25 | + "from autogen import LLMConfig, UserProxyAgent\n", |
| 26 | + "from autogen.agentchat import initiate_group_chat\n", |
| 27 | + "from autogen.agentchat.assistant_agent import AssistantAgent\n", |
| 28 | + "from autogen.agentchat.conversable_agent import ConversableAgent\n", |
| 29 | + "from autogen.agentchat.group import AgentNameTarget\n", |
| 30 | + "from autogen.agentchat.group.llm_condition import StringLLMCondition\n", |
| 31 | + "from autogen.agentchat.group.on_condition import OnCondition\n", |
| 32 | + "from autogen.agentchat.group.patterns.pattern import DefaultPattern\n", |
| 33 | + "\n", |
| 34 | + "load_dotenv()" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": null, |
| 40 | + "id": "2", |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "# Initialize LLMConfig for Grok\n", |
| 45 | + "llm_config = LLMConfig(\n", |
| 46 | + " config_list=[\n", |
| 47 | + " {\n", |
| 48 | + " \"model\": \"grok-4\",\n", |
| 49 | + " \"api_type\": \"openai\", # Use existing openai type only\n", |
| 50 | + " \"base_url\": \"https://api.x.ai/v1\",\n", |
| 51 | + " \"api_key\": os.getenv(\"XAI_API_KEY\"),\n", |
| 52 | + " \"max_tokens\": 1000,\n", |
| 53 | + " }\n", |
| 54 | + " ],\n", |
| 55 | + " temperature=0.5,\n", |
| 56 | + ")\n", |
| 57 | + "image_config = LLMConfig(\n", |
| 58 | + " api_type=\"responses\", model=\"grok-4\", api_key=os.getenv(\"XAI_API_KEY\"), built_in_tools=[\"image_generation\"]\n", |
| 59 | + ")" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "markdown", |
| 64 | + "id": "3", |
| 65 | + "metadata": {}, |
| 66 | + "source": [ |
| 67 | + "## The Example Demonsrates image generation and captioning capabilities of grok 4 with following architecture." |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "markdown", |
| 72 | + "id": "4", |
| 73 | + "metadata": {}, |
| 74 | + "source": [ |
| 75 | + "1. **Image Generation:** Highly detailed Image Generation.\n", |
| 76 | + "2. **Image Captioning:** Precise Image OCR capabilities." |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "markdown", |
| 81 | + "id": "5", |
| 82 | + "metadata": {}, |
| 83 | + "source": [ |
| 84 | + "### Solution Architect Agent architecture" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "markdown", |
| 89 | + "id": "6", |
| 90 | + "metadata": {}, |
| 91 | + "source": [ |
| 92 | + "1. Analyst agent (OCR on Image)\n", |
| 93 | + "2. Solution Architect (Enhance existing architecture)\n", |
| 94 | + "3. User Agent \n", |
| 95 | + "4. Design Agent (for Generating and performing analysis on image)" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "id": "7", |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "with llm_config:\n", |
| 106 | + " analyst = AssistantAgent(\n", |
| 107 | + " name=\"analyst\",\n", |
| 108 | + " system_message=textwrap.dedent(\"\"\"\n", |
| 109 | + " You are an Analyst agent that can reason over images.\n", |
| 110 | + " You will be provided with an image and you will need to analyze it.\n", |
| 111 | + " the image will most probably an image of a software architecture.\n", |
| 112 | + " You will need to analyze the image and provide a detailed analysis of the software architecture.\n", |
| 113 | + " \"\"\").strip(),\n", |
| 114 | + " )\n", |
| 115 | + "\n", |
| 116 | + " solution_architect = ConversableAgent(\n", |
| 117 | + " name=\"solution_architect\",\n", |
| 118 | + " system_message=textwrap.dedent(\"\"\"\n", |
| 119 | + " You are a solution architect that can reason over descriptions of an software architecture.\n", |
| 120 | + " You will be provided with a description of a software architecture and you will need to analyze it.\n", |
| 121 | + " You will need to analyze the description and provide and propose a new software architecture with enhancements.\n", |
| 122 | + " the new architecture should be more efficient, secure, and scalable.\n", |
| 123 | + " the new architecture should include the following components:\n", |
| 124 | + " 1) IMPORTANT: only provide the FLOW of new Architecture components from start to end.\n", |
| 125 | + " 2) IMPORTANT: flow should be concise and to the point. as a graph with description of each node and connection.\n", |
| 126 | + " 3) exit once image is generated.\n", |
| 127 | + " \"\"\").strip(),\n", |
| 128 | + " max_consecutive_auto_reply=1,\n", |
| 129 | + " )\n", |
| 130 | + "\n", |
| 131 | + " user_agent = UserProxyAgent(\n", |
| 132 | + " name=\"user\",\n", |
| 133 | + " human_input_mode=\"ALWAYS\",\n", |
| 134 | + " )\n", |
| 135 | + "\n", |
| 136 | + "design_agent = AssistantAgent(\n", |
| 137 | + " name=\"design_agent\",\n", |
| 138 | + " llm_config=llm_config,\n", |
| 139 | + " system_message=textwrap.dedent(\"\"\"\n", |
| 140 | + " generate images for software architecture.\n", |
| 141 | + " the image should be a flow of the software architecture.\n", |
| 142 | + " the image should be in a format that can be used to generate a software architecture.\n", |
| 143 | + " # if solution architect returns a new software architecture flow, you should generate an image for the new software architecture flow.\n", |
| 144 | + " \"\"\").strip(),\n", |
| 145 | + " max_consecutive_auto_reply=1,\n", |
| 146 | + ")" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": null, |
| 152 | + "id": "8", |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "# ----helper function to save image from base64 string----\n", |
| 157 | + "def save_b64_png(b64_str, fname=\"generated.png\"):\n", |
| 158 | + " with open(fname, \"wb\") as f:\n", |
| 159 | + " f.write(base64.b64decode(b64_str))\n", |
| 160 | + " print(f\"image saved → {fname}\")\n", |
| 161 | + "\n", |
| 162 | + "\n", |
| 163 | + "def save_artbot_images_from_response(response):\n", |
| 164 | + " messages = response.messages\n", |
| 165 | + " for i in range(len(messages)):\n", |
| 166 | + " print(i)\n", |
| 167 | + " message = messages[i]\n", |
| 168 | + " if message.get(\"name\") == \"design_agent\":\n", |
| 169 | + " contents = message.get(\"content\", [])\n", |
| 170 | + " for content in contents:\n", |
| 171 | + " if (\n", |
| 172 | + " content.get(\"type\") == \"tool_call\"\n", |
| 173 | + " and content.get(\"name\") == \"image_generation\"\n", |
| 174 | + " and \"content\" in content\n", |
| 175 | + " and content[\"content\"]\n", |
| 176 | + " ):\n", |
| 177 | + " print(\"Saving image!\")\n", |
| 178 | + " save_b64_png(content[\"content\"], f\"image{i}.png\")" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "markdown", |
| 183 | + "id": "9", |
| 184 | + "metadata": {}, |
| 185 | + "source": [ |
| 186 | + "### Define tools for agent and tool description\n", |
| 187 | + "1. To Get Image Descriptions\n", |
| 188 | + "2. To Generate Image" |
| 189 | + ] |
| 190 | + }, |
| 191 | + { |
| 192 | + "cell_type": "code", |
| 193 | + "execution_count": null, |
| 194 | + "id": "10", |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [], |
| 197 | + "source": [ |
| 198 | + "decription_tool_prompt = \"\"\"\n", |
| 199 | + "This tool is used to get the description of the architecture image.\n", |
| 200 | + "Input Args:\n", |
| 201 | + "- image_url: str (url of the architecture image)\n", |
| 202 | + "\"\"\"\n", |
| 203 | + "\n", |
| 204 | + "\n", |
| 205 | + "@analyst.register_for_llm(description=decription_tool_prompt)\n", |
| 206 | + "@user_agent.register_for_execution(description=decription_tool_prompt)\n", |
| 207 | + "async def get_image_description(image_url: str):\n", |
| 208 | + " prompt = f\"\"\"\n", |
| 209 | + " Given the following architecture image: {image_url}\n", |
| 210 | + " Return a short and concise description of the image.\n", |
| 211 | + " Then, provide the flow of the architecture in clear, numbered or bulleted points.\n", |
| 212 | + " Format:\n", |
| 213 | + " Description: <one paragraph understanding the architecture>\n", |
| 214 | + " Flow:\n", |
| 215 | + " 1. <first step/component>(description)\n", |
| 216 | + " 2. <second step/component>(description)\n", |
| 217 | + " ...\n", |
| 218 | + " Only include the essential components and their order in the flow.\n", |
| 219 | + " \"\"\"\n", |
| 220 | + " chat = {\n", |
| 221 | + " \"role\": \"user\",\n", |
| 222 | + " \"content\": [\n", |
| 223 | + " {\n", |
| 224 | + " \"type\": \"input_text\",\n", |
| 225 | + " \"text\": textwrap.dedent(f\"\"\"\n", |
| 226 | + " {prompt}\n", |
| 227 | + " \"\"\").strip(),\n", |
| 228 | + " },\n", |
| 229 | + " {\"type\": \"image_url\", \"image_url\": {\"url\": image_url, \"detail\": \"high\"}},\n", |
| 230 | + " ],\n", |
| 231 | + " }\n", |
| 232 | + " design_agent.run(message=chat, user_input=False, max_rounds=1).process()\n", |
| 233 | + " last_message = design_agent.last_message()\n", |
| 234 | + " return last_message[\"content\"]\n", |
| 235 | + "\n", |
| 236 | + "\n", |
| 237 | + "tool_prompt = \"\"\"\n", |
| 238 | + "This tool is used to generate an architecture flowchart image for the provided software architecture flow.\n", |
| 239 | + "Input Args:\n", |
| 240 | + "- architecture_flow: str (detail flow of the software architecture in numbered or bulleted points)\n", |
| 241 | + "\"\"\"\n", |
| 242 | + "\n", |
| 243 | + "\n", |
| 244 | + "@solution_architect.register_for_llm(description=tool_prompt)\n", |
| 245 | + "@user_agent.register_for_execution(description=tool_prompt)\n", |
| 246 | + "async def design_architecture(architecture_flow: str):\n", |
| 247 | + " response = design_agent.run(\n", |
| 248 | + " message=f\"generate an architecture flowchart image for the following software architecture flow: {architecture_flow}\",\n", |
| 249 | + " chat_history=True,\n", |
| 250 | + " user_input=False,\n", |
| 251 | + " max_turns=1,\n", |
| 252 | + " ).process()\n", |
| 253 | + "\n", |
| 254 | + " last_message = design_agent.last_message()\n", |
| 255 | + " save_artbot_images_from_response(response)\n", |
| 256 | + " return last_message[\"content\"][-1]" |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "cell_type": "markdown", |
| 261 | + "id": "11", |
| 262 | + "metadata": {}, |
| 263 | + "source": [ |
| 264 | + "### DefaultPattern utilizing an LLM-based handoff condition" |
| 265 | + ] |
| 266 | + }, |
| 267 | + { |
| 268 | + "cell_type": "code", |
| 269 | + "execution_count": null, |
| 270 | + "id": "12", |
| 271 | + "metadata": {}, |
| 272 | + "outputs": [], |
| 273 | + "source": [ |
| 274 | + "default_pattern = DefaultPattern(\n", |
| 275 | + " initial_agent=analyst,\n", |
| 276 | + " agents=[analyst, solution_architect],\n", |
| 277 | + " user_agent=user_agent,\n", |
| 278 | + " group_manager_args={\"llm_config\": llm_config},\n", |
| 279 | + ")\n", |
| 280 | + "\n", |
| 281 | + "analyst.handoffs.add_llm_conditions([\n", |
| 282 | + " OnCondition(\n", |
| 283 | + " target=AgentNameTarget(\"solution_architect\"),\n", |
| 284 | + " condition=StringLLMCondition(prompt=\"When Analyst agent returns Description/Analysis of an Architecture Image\"),\n", |
| 285 | + " ),\n", |
| 286 | + "])" |
| 287 | + ] |
| 288 | + }, |
| 289 | + { |
| 290 | + "cell_type": "code", |
| 291 | + "execution_count": null, |
| 292 | + "id": "13", |
| 293 | + "metadata": {}, |
| 294 | + "outputs": [], |
| 295 | + "source": [ |
| 296 | + "IMAGE_URL = \"https://user-images.githubusercontent.com/65826354/179526761-7f473e3d-f71c-429d-bf49-16958c5cb7a6.png\"\n", |
| 297 | + "default_paresult, context, last_agent = initiate_group_chat(\n", |
| 298 | + " pattern=default_pattern,\n", |
| 299 | + " messages=f\"Describe this image {IMAGE_URL} provide a detailed analysis of the software architecture.\",\n", |
| 300 | + " max_rounds=20,\n", |
| 301 | + ")" |
| 302 | + ] |
| 303 | + } |
| 304 | + ], |
| 305 | + "metadata": { |
| 306 | + "front_matter": { |
| 307 | + "description": "Using MathChat to Solve Math Problems", |
| 308 | + "tags": [ |
| 309 | + "grok" |
| 310 | + ] |
| 311 | + }, |
| 312 | + "kernelspec": { |
| 313 | + "display_name": "Python 3", |
| 314 | + "language": "python", |
| 315 | + "name": "python3" |
| 316 | + }, |
| 317 | + "language_info": { |
| 318 | + "codemirror_mode": { |
| 319 | + "name": "ipython", |
| 320 | + "version": 3 |
| 321 | + }, |
| 322 | + "file_extension": ".py", |
| 323 | + "mimetype": "text/x-python", |
| 324 | + "name": "python", |
| 325 | + "nbconvert_exporter": "python", |
| 326 | + "pygments_lexer": "ipython3", |
| 327 | + "version": "3.13.5" |
| 328 | + } |
| 329 | + }, |
| 330 | + "nbformat": 4, |
| 331 | + "nbformat_minor": 5 |
| 332 | +} |
0 commit comments