|
| 1 | +## This is a prototype of ctc beam search decoder |
| 2 | + |
| 3 | +import copy |
| 4 | +import random |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +# vocab = blank + space + English characters |
| 8 | +#vocab = ['-', ' '] + [chr(i) for i in range(97, 123)] |
| 9 | + |
| 10 | +vocab = ['-', '_', 'a'] |
| 11 | + |
| 12 | + |
| 13 | +def ids_str2list(ids_str): |
| 14 | + ids_str = ids_str.split(' ') |
| 15 | + ids_list = [int(elem) for elem in ids_str] |
| 16 | + return ids_list |
| 17 | + |
| 18 | + |
| 19 | +def ids_list2str(ids_list): |
| 20 | + ids_str = [str(elem) for elem in ids_list] |
| 21 | + ids_str = ' '.join(ids_str) |
| 22 | + return ids_str |
| 23 | + |
| 24 | + |
| 25 | +def ids_id2token(ids_list): |
| 26 | + ids_str = '' |
| 27 | + for ids in ids_list: |
| 28 | + ids_str += vocab[ids] |
| 29 | + return ids_str |
| 30 | + |
| 31 | + |
| 32 | +def ctc_beam_search_decoder(input_probs_matrix, |
| 33 | + beam_size, |
| 34 | + max_time_steps=None, |
| 35 | + lang_model=None, |
| 36 | + alpha=1.0, |
| 37 | + beta=1.0, |
| 38 | + blank_id=0, |
| 39 | + space_id=1, |
| 40 | + num_results_per_sample=None): |
| 41 | + ''' |
| 42 | + beam search decoder for CTC-trained network, called outside of the recurrent group. |
| 43 | + adapted from Algorithm 1 in https://arxiv.org/abs/1408.2873. |
| 44 | +
|
| 45 | + param input_probs_matrix: probs matrix for input sequence, row major |
| 46 | + type input_probs_matrix: 2D matrix. |
| 47 | + param beam_size: width for beam search |
| 48 | + type beam_size: int |
| 49 | + max_time_steps: maximum steps' number for input sequence, <=len(input_probs_matrix) |
| 50 | + type max_time_steps: int |
| 51 | + lang_model: language model for scoring |
| 52 | + type lang_model: function |
| 53 | +
|
| 54 | + ...... |
| 55 | +
|
| 56 | + ''' |
| 57 | + if num_results_per_sample is None: |
| 58 | + num_results_per_sample = beam_size |
| 59 | + assert num_results_per_sample <= beam_size |
| 60 | + |
| 61 | + if max_time_steps is None: |
| 62 | + max_time_steps = len(input_probs_matrix) |
| 63 | + else: |
| 64 | + max_time_steps = min(max_time_steps, len(input_probs_matrix)) |
| 65 | + assert max_time_steps > 0 |
| 66 | + |
| 67 | + vocab_dim = len(input_probs_matrix[0]) |
| 68 | + assert blank_id < vocab_dim |
| 69 | + assert space_id < vocab_dim |
| 70 | + |
| 71 | + ## initialize |
| 72 | + start_id = -1 |
| 73 | + # the set containing selected prefixes |
| 74 | + prefix_set_prev = {str(start_id): 1.0} |
| 75 | + probs_b, probs_nb = {str(start_id): 1.0}, {str(start_id): 0.0} |
| 76 | + |
| 77 | + ## extend prefix in loop |
| 78 | + for time_step in range(max_time_steps): |
| 79 | + # the set containing candidate prefixes |
| 80 | + prefix_set_next = {} |
| 81 | + probs_b_cur, probs_nb_cur = {}, {} |
| 82 | + for l in prefix_set_prev: |
| 83 | + prob = input_probs_matrix[time_step] |
| 84 | + |
| 85 | + # convert ids in string to list |
| 86 | + ids_list = ids_str2list(l) |
| 87 | + end_id = ids_list[-1] |
| 88 | + if not prefix_set_next.has_key(l): |
| 89 | + probs_b_cur[l], probs_nb_cur[l] = 0.0, 0.0 |
| 90 | + |
| 91 | + # extend prefix by travering vocabulary |
| 92 | + for c in range(0, vocab_dim): |
| 93 | + if c == blank_id: |
| 94 | + probs_b_cur[l] += prob[c] * (probs_b[l] + probs_nb[l]) |
| 95 | + else: |
| 96 | + l_plus = l + ' ' + str(c) |
| 97 | + if not prefix_set_next.has_key(l_plus): |
| 98 | + probs_b_cur[l_plus], probs_nb_cur[l_plus] = 0.0, 0.0 |
| 99 | + |
| 100 | + if c == end_id: |
| 101 | + probs_nb_cur[l_plus] += prob[c] * probs_b[l] |
| 102 | + probs_nb_cur[l] += prob[c] * probs_nb[l] |
| 103 | + elif c == space_id: |
| 104 | + lm = 1.0 if lang_model is None \ |
| 105 | + else np.power(lang_model(ids_list), alpha) |
| 106 | + probs_nb_cur[l_plus] += lm * prob[c] * ( |
| 107 | + probs_b[l] + probs_nb[l]) |
| 108 | + else: |
| 109 | + probs_nb_cur[l_plus] += prob[c] * ( |
| 110 | + probs_b[l] + probs_nb[l]) |
| 111 | + # add l_plus into prefix_set_next |
| 112 | + prefix_set_next[l_plus] = probs_nb_cur[ |
| 113 | + l_plus] + probs_b_cur[l_plus] |
| 114 | + # add l into prefix_set_next |
| 115 | + prefix_set_next[l] = probs_b_cur[l] + probs_nb_cur[l] |
| 116 | + # update probs |
| 117 | + probs_b, probs_nb = copy.deepcopy(probs_b_cur), copy.deepcopy( |
| 118 | + probs_nb_cur) |
| 119 | + |
| 120 | + ## store top beam_size prefixes |
| 121 | + prefix_set_prev = sorted( |
| 122 | + prefix_set_next.iteritems(), key=lambda asd: asd[1], reverse=True) |
| 123 | + if beam_size < len(prefix_set_prev): |
| 124 | + prefix_set_prev = prefix_set_prev[:beam_size] |
| 125 | + prefix_set_prev = dict(prefix_set_prev) |
| 126 | + |
| 127 | + beam_result = [] |
| 128 | + for (seq, prob) in prefix_set_prev.items(): |
| 129 | + if prob > 0.0: |
| 130 | + ids_list = ids_str2list(seq) |
| 131 | + log_prob = np.log(prob) |
| 132 | + beam_result.append([log_prob, ids_list[1:]]) |
| 133 | + |
| 134 | + ## output top beam_size decoding results |
| 135 | + beam_result = sorted(beam_result, key=lambda asd: asd[0], reverse=True) |
| 136 | + if num_results_per_sample < beam_size: |
| 137 | + beam_result = beam_result[:num_results_per_sample] |
| 138 | + return beam_result |
| 139 | + |
| 140 | + |
| 141 | +def language_model(input): |
| 142 | + # TODO |
| 143 | + return random.uniform(0, 1) |
| 144 | + |
| 145 | + |
| 146 | +def simple_test(): |
| 147 | + |
| 148 | + input_probs_matrix = [[0.1, 0.3, 0.6], [0.2, 0.1, 0.7], [0.5, 0.2, 0.3]] |
| 149 | + |
| 150 | + beam_result = ctc_beam_search_decoder( |
| 151 | + input_probs_matrix=input_probs_matrix, |
| 152 | + beam_size=20, |
| 153 | + blank_id=0, |
| 154 | + space_id=1, ) |
| 155 | + |
| 156 | + print "\nbeam search output:" |
| 157 | + for result in beam_result: |
| 158 | + print("%6f\t%s" % (result[0], ids_id2token(result[1]))) |
| 159 | + |
| 160 | + |
| 161 | +if __name__ == '__main__': |
| 162 | + simple_test() |
0 commit comments