@@ -38,6 +38,7 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
38
38
```
39
39
Arguments:
40
40
- ` input ` (required): Audio file to recognize.
41
+ - ` task ` (required): Specify ` vector ` task. Default ` spk ` 。
41
42
- ` model ` : Model type of vector task. Default: ` ecapatdnn_voxceleb12 ` .
42
43
- ` sample_rate ` : Sample rate of the model. Default: ` 16000 ` .
43
44
- ` config ` : Config of vector task. Use pretrained model when it is None. Default: ` None ` .
@@ -47,45 +48,45 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
47
48
Output:
48
49
49
50
``` bash
50
- demo [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268
51
- -3.04878 1.611095 10.127234 -10.534177 -15.821609
52
- 1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228
53
- -11.343508 2.3385992 -8.719341 14.213509 15.404744
54
- -0.39327756 6.338786 2.688887 8.7104025 17.469526
55
- -8.77959 7.0576906 4.648855 -1.3089896 -23.294737
56
- 8.013747 13.891729 -9.926753 5.655307 -5.9422326
57
- -22.842539 0.6293588 -18.46266 -10.811862 9.8192625
58
- 3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942
59
- 1.7594414 -0.6485091 4.485623 2.0207152 7.264915
60
- -6.40137 23.63524 2.9711294 -22.708025 9.93719
61
- 20.354511 -10.324688 -0.700492 -8.783211 -5.27593
62
- 15.999649 3.3004563 12.747926 15.429879 4.7849145
63
- 5.6699696 -2.3826702 10.605882 3.9112158 3.1500628
64
- 15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124
65
- -9.224193 14.568347 -10.568833 4.982321 -4.342062
66
- 0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362
67
- -6.680575 0.4757669 -5.035051 -6.7964664 16.865469
68
- -11.54324 7.681869 0.44475392 9.708182 -8.932846
69
- 0.4123232 -4.361452 1.3948607 9.511665 0.11667654
70
- 2.9079323 6.049952 9.275183 -18.078873 6.2983274
71
- -0.7500531 -2.725033 -7.6027865 3.3404543 2.990815
72
- 4.010979 11.000591 -2.8873312 7.1352735 -16.79663
73
- 18.495346 -14.293832 7.89578 2.2714825 22.976387
74
- -4.875734 -3.0836344 -2.9999814 13.751918 6.448228
75
- -11.924197 2.171869 2.0423572 -6.173772 10.778437
76
- 25.77281 -4.9495463 14.57806 0.3044315 2.6132357
77
- -7.591999 -2.076944 9.025118 1.7834753 -3.1799617
78
- -4.9401326 23.465864 5.1685796 -9.018578 9.037825
79
- -4.4150195 6.859591 -12.274467 -0.88911164 5.186309
80
- -3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652
81
- -12.397416 -12.719869 -1.395601 2.1150916 5.7381287
82
- -4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127
83
- 8.731719 -20.778936 -11.495662 5.8033476 -4.752041
84
- 10.833007 -6.717991 4.504732 13.4244375 1.1306485
85
- 7.3435574 1.400918 14.704036 -9.501399 7.2315617
86
- -6.417456 1.3333273 11.872697 -0.30664724 8.8845
87
- 6.5569253 4.7948146 0.03662816 -8.704245 6.224871
88
- -3.2701402 -11.508579 ]
51
+ demo [ 1.4217498 5.626253 -5.342073 1.1773866 3.308055
52
+ 1.756596 5.167894 10.80636 -3.8226728 -5.6141334
53
+ 2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897
54
+ -9.723131 0.6619743 -6.976803 10.213478 7.494748
55
+ 2.9105635 3.8949256 3.7999806 7.1061673 16.905321
56
+ -7.1493764 8.733103 3.4230042 -4.831653 -11.403367
57
+ 11.232214 7.1274667 -4.2828417 2.452362 -5.130748
58
+ -18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683
59
+ 0.7618269 1.1253023 -2.083836 4.725744 -8.782597
60
+ -3.539873 3.814236 5.1420674 2.162061 4.096431
61
+ -6.4162116 12.747448 1.9429878 -15.152943 6.417416
62
+ 16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939
63
+ 11.567354 3.69788 11.258265 7.442363 9.183411
64
+ 4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783
65
+ 7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073
66
+ -3.7776625 6.917234 -9.848748 -2.0944717 -5.135116
67
+ 0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578
68
+ -7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651
69
+ -4.473626 7.6624317 -0.55381083 9.631587 -6.4704556
70
+ -8.548508 4.3716145 -0.79702514 4.478997 -2.9758704
71
+ 3.272176 2.8382776 5.134597 -9.190781 -0.5657382
72
+ -4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576
73
+ -0.31784213 9.493548 2.1144536 4.358092 -12.089823
74
+ 8.451689 -7.925461 4.6242585 4.4289427 18.692003
75
+ -2.6204622 -5.149185 -0.35821092 8.488551 4.981496
76
+ -9.32683 -2.2544234 6.6417594 1.2119585 10.977129
77
+ 16.555033 3.3238444 9.551863 -1.6676947 -0.79539716
78
+ -8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796
79
+ 0.66607 15.443222 4.740594 -3.4725387 11.592567
80
+ -2.054497 1.7361217 -8.265324 -9.30447 5.4068313
81
+ -1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733
82
+ -8.649895 -9.998958 -2.564841 -0.53999114 2.601808
83
+ -0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085
84
+ 1.483641 -15.365992 -8.288208 3.8847756 -3.4876456
85
+ 7.3629923 0.4657332 3.132599 12.438889 -1.8337058
86
+ 4.532936 2.7264361 10.145339 -6.521951 2.897153
87
+ -3.3925855 5.079156 7.759716 4.677565 5.8457737
88
+ 2.402413 7.7071047 3.9711342 -6.390043 6.1268735
89
+ -3.7760346 -11.118123 ]
89
90
```
90
91
91
92
- Python API
@@ -97,56 +98,57 @@ wget -c https://paddlespeech.bj.bcebos.com/vector/audio/85236145389.wav
97
98
audio_emb = vector_executor(
98
99
model = ' ecapatdnn_voxceleb12' ,
99
100
sample_rate = 16000 ,
100
- config = None ,
101
+ config = None , # Set `config` and `ckpt_path` to None to use pretrained model.
101
102
ckpt_path = None ,
102
103
audio_file = ' ./85236145389.wav' ,
103
- force_yes = False ,
104
104
device = paddle.get_device())
105
105
print (' Audio embedding Result: \n {} ' .format(audio_emb))
106
106
```
107
107
108
- Output:
108
+ Output:
109
+
109
110
``` bash
110
111
# Vector Result:
111
- [ -5.749211 9.505463 -8.200284 -5.2075014 5.3940268
112
- -3.04878 1.611095 10.127234 -10.534177 -15.821609
113
- 1.2032688 -0.35080156 1.2629458 -12.643498 -2.5758228
114
- -11.343508 2.3385992 -8.719341 14.213509 15.404744
115
- -0.39327756 6.338786 2.688887 8.7104025 17.469526
116
- -8.77959 7.0576906 4.648855 -1.3089896 -23.294737
117
- 8.013747 13.891729 -9.926753 5.655307 -5.9422326
118
- -22.842539 0.6293588 -18.46266 -10.811862 9.8192625
119
- 3.0070958 3.8072643 -2.3861165 3.0821571 -14.739942
120
- 1.7594414 -0.6485091 4.485623 2.0207152 7.264915
121
- -6.40137 23.63524 2.9711294 -22.708025 9.93719
122
- 20.354511 -10.324688 -0.700492 -8.783211 -5.27593
123
- 15.999649 3.3004563 12.747926 15.429879 4.7849145
124
- 5.6699696 -2.3826702 10.605882 3.9112158 3.1500628
125
- 15.859915 -2.1832209 -23.908653 -6.4799504 -4.5365124
126
- -9.224193 14.568347 -10.568833 4.982321 -4.342062
127
- 0.0914714 12.645902 -5.74285 -3.2141201 -2.7173362
128
- -6.680575 0.4757669 -5.035051 -6.7964664 16.865469
129
- -11.54324 7.681869 0.44475392 9.708182 -8.932846
130
- 0.4123232 -4.361452 1.3948607 9.511665 0.11667654
131
- 2.9079323 6.049952 9.275183 -18.078873 6.2983274
132
- -0.7500531 -2.725033 -7.6027865 3.3404543 2.990815
133
- 4.010979 11.000591 -2.8873312 7.1352735 -16.79663
134
- 18.495346 -14.293832 7.89578 2.2714825 22.976387
135
- -4.875734 -3.0836344 -2.9999814 13.751918 6.448228
136
- -11.924197 2.171869 2.0423572 -6.173772 10.778437
137
- 25.77281 -4.9495463 14.57806 0.3044315 2.6132357
138
- -7.591999 -2.076944 9.025118 1.7834753 -3.1799617
139
- -4.9401326 23.465864 5.1685796 -9.018578 9.037825
140
- -4.4150195 6.859591 -12.274467 -0.88911164 5.186309
141
- -3.9988663 -13.638606 -9.925445 -0.06329413 -3.6709652
142
- -12.397416 -12.719869 -1.395601 2.1150916 5.7381287
143
- -4.4691963 -3.82819 -0.84233856 -1.1604277 -13.490127
144
- 8.731719 -20.778936 -11.495662 5.8033476 -4.752041
145
- 10.833007 -6.717991 4.504732 13.4244375 1.1306485
146
- 7.3435574 1.400918 14.704036 -9.501399 7.2315617
147
- -6.417456 1.3333273 11.872697 -0.30664724 8.8845
148
- 6.5569253 4.7948146 0.03662816 -8.704245 6.224871
149
- -3.2701402 -11.508579 ]
112
+ Audio embedding Result:
113
+ [ 1.4217498 5.626253 -5.342073 1.1773866 3.308055
114
+ 1.756596 5.167894 10.80636 -3.8226728 -5.6141334
115
+ 2.623845 -0.8072968 1.9635103 -7.3128724 0.01103897
116
+ -9.723131 0.6619743 -6.976803 10.213478 7.494748
117
+ 2.9105635 3.8949256 3.7999806 7.1061673 16.905321
118
+ -7.1493764 8.733103 3.4230042 -4.831653 -11.403367
119
+ 11.232214 7.1274667 -4.2828417 2.452362 -5.130748
120
+ -18.177666 -2.6116815 -11.000337 -6.7314315 1.6564683
121
+ 0.7618269 1.1253023 -2.083836 4.725744 -8.782597
122
+ -3.539873 3.814236 5.1420674 2.162061 4.096431
123
+ -6.4162116 12.747448 1.9429878 -15.152943 6.417416
124
+ 16.097002 -9.716668 -1.9920526 -3.3649497 -1.871939
125
+ 11.567354 3.69788 11.258265 7.442363 9.183411
126
+ 4.5281515 -1.2417862 4.3959084 6.6727695 5.8898783
127
+ 7.627124 -0.66919386 -11.889693 -9.208865 -7.4274073
128
+ -3.7776625 6.917234 -9.848748 -2.0944717 -5.135116
129
+ 0.49563864 9.317534 -5.9141874 -1.8098574 -0.11738578
130
+ -7.169265 -1.0578263 -5.7216787 -5.1173844 16.137651
131
+ -4.473626 7.6624317 -0.55381083 9.631587 -6.4704556
132
+ -8.548508 4.3716145 -0.79702514 4.478997 -2.9758704
133
+ 3.272176 2.8382776 5.134597 -9.190781 -0.5657382
134
+ -4.8745747 2.3165567 -5.984303 -2.1798875 0.35541576
135
+ -0.31784213 9.493548 2.1144536 4.358092 -12.089823
136
+ 8.451689 -7.925461 4.6242585 4.4289427 18.692003
137
+ -2.6204622 -5.149185 -0.35821092 8.488551 4.981496
138
+ -9.32683 -2.2544234 6.6417594 1.2119585 10.977129
139
+ 16.555033 3.3238444 9.551863 -1.6676947 -0.79539716
140
+ -8.605674 -0.47356385 2.6741948 -5.359179 -2.6673796
141
+ 0.66607 15.443222 4.740594 -3.4725387 11.592567
142
+ -2.054497 1.7361217 -8.265324 -9.30447 5.4068313
143
+ -1.5180256 -7.746615 -6.089606 0.07112726 -0.34904733
144
+ -8.649895 -9.998958 -2.564841 -0.53999114 2.601808
145
+ -0.31927416 -1.8815292 -2.07215 -3.4105783 -8.2998085
146
+ 1.483641 -15.365992 -8.288208 3.8847756 -3.4876456
147
+ 7.3629923 0.4657332 3.132599 12.438889 -1.8337058
148
+ 4.532936 2.7264361 10.145339 -6.521951 2.897153
149
+ -3.3925855 5.079156 7.759716 4.677565 5.8457737
150
+ 2.402413 7.7071047 3.9711342 -6.390043 6.1268735
151
+ -3.7760346 -11.118123 ]
150
152
```
151
153
152
154
### 4.Pretrained Models
0 commit comments