@@ -417,15 +417,15 @@ def compute_result_transcripts(self, audio, audio_len):
417
417
audio , audio_len , decoder_chunk_size = 1 )
418
418
result_transcripts = trans [- 1 :]
419
419
elif self .args .model_type == "offline" :
420
- batch_size = output_probs .shape [0 ]
421
- self .model .decoder .reset_decoder (batch_size = batch_size )
422
420
output_probs , output_lens = self .static_forward_offline (audio ,
423
421
audio_len )
422
+ batch_size = output_probs .shape [0 ]
423
+ self .model .decoder .reset_decoder (batch_size = batch_size )
424
424
425
425
self .model .decoder .next (output_probs , output_lens )
426
426
427
427
trans_best , trans_beam = self .model .decoder .decode ()
428
-
428
+
429
429
result_transcripts = trans_best
430
430
431
431
else :
@@ -524,8 +524,8 @@ def static_forward_online(self, audio, audio_len,
524
524
if self .args .enable_auto_log is True :
525
525
# record the model preprocessing time
526
526
self .autolog .times .stamp ()
527
-
528
- self .model .decoder .reset_decoder (batch_size = 1 )
527
+
528
+ self .model .decoder .reset_decoder (batch_size = 1 )
529
529
for i in range (0 , num_chunk ):
530
530
start = i * chunk_stride
531
531
end = start + chunk_size
@@ -569,7 +569,6 @@ def static_forward_online(self, audio, audio_len,
569
569
probs_chunk_lens_list .append (output_chunk_lens )
570
570
trans_best , trans_beam = self .model .decoder .decode ()
571
571
trans .append (trans_best [0 ])
572
-
573
572
574
573
output_probs = np .concatenate (probs_chunk_list , axis = 1 )
575
574
output_lens = np .sum (probs_chunk_lens_list , axis = 0 )
0 commit comments