|
| 1 | +# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import os |
| 16 | +import sys |
| 17 | + |
| 18 | +import paddle |
| 19 | +import time |
| 20 | + |
| 21 | +__dir__ = os.path.dirname(os.path.abspath(__file__)) |
| 22 | +sys.path.append(os.path.abspath(os.path.join(__dir__, "../../"))) |
| 23 | + |
| 24 | +from ppfleetx.data import build_dataloader |
| 25 | +from ppfleetx.distributed.apis import env |
| 26 | +from ppfleetx.models import build_module |
| 27 | +from ppfleetx.optims import build_lr_scheduler, build_optimizer |
| 28 | +from ppfleetx.utils import config |
| 29 | + |
| 30 | + |
| 31 | +class MovingAverage: |
| 32 | + def __init__(self): |
| 33 | + self.sum = 0 |
| 34 | + self.val = [0] * self.window_size |
| 35 | + self.cnt = 0 |
| 36 | + |
| 37 | + def update(self, val, n): |
| 38 | + self.cnt = min(self.cnt + n, self.window_size) |
| 39 | + offset = max(self.window_size - n, 0) |
| 40 | + self.sum -= sum(self.values[:-offset]) |
| 41 | + self.sum = val * min(n, self.window_size) |
| 42 | + self.avg = self.sum / self.cnt |
| 43 | + |
| 44 | + |
| 45 | +def main(): |
| 46 | + args = config.parse_args() |
| 47 | + cfg = config.get_config(args.config, overrides=args.override, show=False) |
| 48 | + paddle.device.set_device("gpu:0") |
| 49 | + env.set_seed(cfg.Global.seed) |
| 50 | + module = build_module(cfg) |
| 51 | + config.print_config(cfg) |
| 52 | + |
| 53 | + amp_config = cfg.Engine.mix_precision |
| 54 | + scale_loss = amp_config["scale_loss"] |
| 55 | + |
| 56 | + scaler = paddle.amp.GradScaler(init_loss_scaling=scale_loss) |
| 57 | + |
| 58 | + train_data_loader = build_dataloader(cfg.Data, "Train") |
| 59 | + |
| 60 | + enable_to_static = cfg.Global.to_static |
| 61 | + if str(enable_to_static).lower() == "true": |
| 62 | + model = paddle.jit.to_static(module.model) |
| 63 | + else: |
| 64 | + model = module.model |
| 65 | + |
| 66 | + cfg.Optimizer.lr.update( |
| 67 | + { |
| 68 | + "epochs": cfg.Engine.num_train_epochs, |
| 69 | + "step_each_epoch": len(train_data_loader), |
| 70 | + "total_steps": cfg.Engine.max_steps, |
| 71 | + } |
| 72 | + ) |
| 73 | + lr_scheduler = build_lr_scheduler(cfg.Optimizer.lr) |
| 74 | + optimizer = build_optimizer(cfg.Optimizer, model, lr_scheduler) |
| 75 | + |
| 76 | + global_batch_size = cfg.Global.global_batch_size |
| 77 | + max_steps = cfg.Engine.max_steps |
| 78 | + for step, batch in enumerate(train_data_loader()): |
| 79 | + if step <= max_steps: |
| 80 | + init_time = time.time() |
| 81 | + tokens, position_ids, labels, loss_mask = batch |
| 82 | + |
| 83 | + preds = model(tokens, position_ids) |
| 84 | + loss = module.loss_fn(preds, labels, loss_mask) |
| 85 | + |
| 86 | + loss.backward() |
| 87 | + optimizer.step() |
| 88 | + |
| 89 | + optimizer.clear_grad() |
| 90 | + lr_scheduler.step(global_batch_size) |
| 91 | + after_time = time.time() |
| 92 | + during_time = after_time - init_time |
| 93 | + |
| 94 | + print( |
| 95 | + "step: %d/%d\t" % (step, max_steps), |
| 96 | + "loss:%.6f\t" % loss.numpy(), |
| 97 | + "lr:%.6g\t" % optimizer.get_lr(), |
| 98 | + "loss_scale:%.1f\t" % scaler._scale.numpy(), |
| 99 | + "batch time: %.4f s" % (during_time), |
| 100 | + ) |
| 101 | + |
| 102 | + |
| 103 | +if __name__ == "__main__": |
| 104 | + main() |
0 commit comments