@@ -391,7 +391,7 @@ def update_embeddings(
391391
392392 vector_id_map = {}
393393 for doc in document_batch :
394- vector_id_map [str (doc .id )] = str (vector_id )
394+ vector_id_map [str (doc .id )] = str (vector_id ) + "_" + index
395395 vector_id += 1
396396 self .update_vector_ids (vector_id_map , index = index )
397397 progress_bar .set_description_str ("Documents Processed" )
@@ -443,7 +443,6 @@ def get_all_documents_generator(
443443 )
444444 if return_embedding is None :
445445 return_embedding = self .return_embedding
446-
447446 for doc in documents :
448447 if return_embedding :
449448 if doc .meta and doc .meta .get ("vector_id" ) is not None :
@@ -588,7 +587,6 @@ def query_by_embedding(
588587
589588 if filters :
590589 logger .warning ("Query filters are not implemented for the FAISSDocumentStore." )
591-
592590 index = index or self .index
593591 if not self .faiss_indexes .get (index ):
594592 raise Exception (f"Index named '{ index } ' does not exists. Use 'update_embeddings()' to create an index." )
@@ -599,11 +597,9 @@ def query_by_embedding(
599597 query_emb = query_emb .reshape (1 , - 1 ).astype (np .float32 )
600598 if self .similarity == "cosine" :
601599 self .normalize_embedding (query_emb )
602-
603600 score_matrix , vector_id_matrix = self .faiss_indexes [index ].search (query_emb , top_k )
604601 vector_ids_for_query = [str (vector_id ) + "_" + index for vector_id in vector_id_matrix [0 ] if vector_id != - 1 ]
605602 documents = self .get_documents_by_vector_ids (vector_ids_for_query , index = index )
606-
607603 # assign query score to each document
608604 scores_for_vector_ids : Dict [str , float ] = {
609605 str (v_id ): s for v_id , s in zip (vector_id_matrix [0 ], score_matrix [0 ])
0 commit comments