|
| 1 | +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# Copyright 2021 The HuggingFace Team. All rights reserved. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import tempfile |
| 17 | +import unittest |
| 18 | + |
| 19 | +from paddlenlp.transformers import SPIECE_UNDERLINE, MBart50Tokenizer |
| 20 | +from paddlenlp.transformers.mbart.modeling import shift_tokens_right |
| 21 | + |
| 22 | +from ...testing_utils import get_tests_dir, nested_simplify |
| 23 | +from ..test_tokenizer_common import TokenizerTesterMixin |
| 24 | + |
| 25 | +SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") |
| 26 | + |
| 27 | +EN_CODE = 250004 |
| 28 | +RO_CODE = 250020 |
| 29 | + |
| 30 | + |
| 31 | +class MBart50TokenizationTest(TokenizerTesterMixin, unittest.TestCase): |
| 32 | + tokenizer_class = MBart50Tokenizer |
| 33 | + test_sentencepiece = True |
| 34 | + |
| 35 | + test_offsets = False |
| 36 | + |
| 37 | + def setUp(self): |
| 38 | + super().setUp() |
| 39 | + |
| 40 | + # We have a SentencePiece fixture for testing |
| 41 | + tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True) |
| 42 | + tokenizer.save_pretrained(self.tmpdirname) |
| 43 | + |
| 44 | + def test_convert_token_and_id(self): |
| 45 | + """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" |
| 46 | + token = "<s>" |
| 47 | + token_id = 0 |
| 48 | + |
| 49 | + self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) |
| 50 | + self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) |
| 51 | + |
| 52 | + def test_get_vocab(self): |
| 53 | + vocab_keys = list(self.get_tokenizer().get_vocab().keys()) |
| 54 | + |
| 55 | + self.assertEqual(vocab_keys[0], "<s>") |
| 56 | + self.assertEqual(vocab_keys[1], "<pad>") |
| 57 | + self.assertEqual(vocab_keys[-1], "<mask>") |
| 58 | + self.assertEqual(len(vocab_keys), 1_054) |
| 59 | + |
| 60 | + def test_vocab_size(self): |
| 61 | + self.assertEqual(self.get_tokenizer().vocab_size, 1_054) |
| 62 | + |
| 63 | + def test_full_tokenizer(self): |
| 64 | + tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True) |
| 65 | + |
| 66 | + tokens = tokenizer.tokenize("This is a test") |
| 67 | + self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) |
| 68 | + |
| 69 | + self.assertListEqual( |
| 70 | + tokenizer.convert_tokens_to_ids(tokens), |
| 71 | + [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], |
| 72 | + ) |
| 73 | + |
| 74 | + tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") |
| 75 | + self.assertListEqual( |
| 76 | + tokens, |
| 77 | + # fmt: off |
| 78 | + [ |
| 79 | + SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", |
| 80 | + SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", |
| 81 | + SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", |
| 82 | + SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", |
| 83 | + SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", |
| 84 | + "." |
| 85 | + ], |
| 86 | + # fmt: on |
| 87 | + ) |
| 88 | + ids = tokenizer.convert_tokens_to_ids(tokens) |
| 89 | + self.assertListEqual( |
| 90 | + ids, |
| 91 | + [ |
| 92 | + value + tokenizer.fairseq_offset |
| 93 | + for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] |
| 94 | + ], |
| 95 | + ) |
| 96 | + |
| 97 | + back_tokens = tokenizer.convert_ids_to_tokens(ids) |
| 98 | + self.assertListEqual( |
| 99 | + back_tokens, |
| 100 | + # fmt: off |
| 101 | + [ |
| 102 | + SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", |
| 103 | + SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", |
| 104 | + SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", |
| 105 | + SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", |
| 106 | + SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", |
| 107 | + "<unk>", "." |
| 108 | + ], |
| 109 | + # fmt: on |
| 110 | + ) |
| 111 | + |
| 112 | + |
| 113 | +class MBart50OneToManyIntegrationTest(unittest.TestCase): |
| 114 | + checkpoint_name = "mbart-large-50-one-to-many-mmt" |
| 115 | + src_text = [ |
| 116 | + " UN Chief Says There Is No Military Solution in Syria", |
| 117 | + """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", |
| 118 | + ] |
| 119 | + tgt_text = [ |
| 120 | + "Şeful ONU declară că nu există o soluţie militară în Siria", |
| 121 | + "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" |
| 122 | + ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' |
| 123 | + " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", |
| 124 | + ] |
| 125 | + expected_src_tokens = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] |
| 126 | + |
| 127 | + @classmethod |
| 128 | + def setUpClass(cls): |
| 129 | + cls.tokenizer: MBart50Tokenizer = MBart50Tokenizer.from_pretrained( |
| 130 | + cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO" |
| 131 | + ) |
| 132 | + cls.pad_token_id = 1 |
| 133 | + return cls |
| 134 | + |
| 135 | + def check_language_codes(self): |
| 136 | + self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001) |
| 137 | + self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004) |
| 138 | + self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020) |
| 139 | + self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"], 250038) |
| 140 | + |
| 141 | + def test_tokenizer_decode_ignores_language_codes(self): |
| 142 | + self.assertIn(RO_CODE, self.tokenizer.all_special_ids) |
| 143 | + generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] |
| 144 | + result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) |
| 145 | + expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) |
| 146 | + self.assertEqual(result, expected_romanian) |
| 147 | + self.assertNotIn(self.tokenizer.eos_token, result) |
| 148 | + |
| 149 | + def test_tokenizer_truncation(self): |
| 150 | + src_text = ["this is gunna be a long sentence " * 20] |
| 151 | + assert isinstance(src_text[0], str) |
| 152 | + desired_max_length = 10 |
| 153 | + ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0] |
| 154 | + self.assertEqual(ids[0], EN_CODE) |
| 155 | + self.assertEqual(ids[-1], 2) |
| 156 | + self.assertEqual(len(ids), desired_max_length) |
| 157 | + |
| 158 | + def test_mask_token(self): |
| 159 | + self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250053, 250001]) |
| 160 | + |
| 161 | + def test_special_tokens_unaffacted_by_save_load(self): |
| 162 | + tmpdirname = tempfile.mkdtemp() |
| 163 | + original_special_tokens = self.tokenizer.fairseq_tokens_to_ids |
| 164 | + self.tokenizer.save_pretrained(tmpdirname) |
| 165 | + new_tok = MBart50Tokenizer.from_pretrained(tmpdirname) |
| 166 | + self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens) |
| 167 | + |
| 168 | + def test_seq2seq_max_target_length(self): |
| 169 | + batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pd") |
| 170 | + targets = self.tokenizer(self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pd") |
| 171 | + labels = targets["input_ids"] |
| 172 | + batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id) |
| 173 | + |
| 174 | + self.assertEqual(batch.input_ids.shape[1], 3) |
| 175 | + self.assertEqual(batch.decoder_input_ids.shape[1], 10) |
| 176 | + |
| 177 | + def test_tokenizer_translation(self): |
| 178 | + inputs = self.tokenizer._build_translation_inputs( |
| 179 | + "A test", return_tensors="pd", src_lang="en_XX", tgt_lang="ar_AR" |
| 180 | + ) |
| 181 | + |
| 182 | + self.assertEqual( |
| 183 | + nested_simplify(inputs), |
| 184 | + { |
| 185 | + # en_XX, A, test, EOS |
| 186 | + "input_ids": [[250004, 62, 3034, 2]], |
| 187 | + "attention_mask": [[1, 1, 1, 1]], |
| 188 | + # ar_AR |
| 189 | + "forced_bos_token_id": 250001, |
| 190 | + }, |
| 191 | + ) |
0 commit comments