Skip to content

Commit 1d74d62

Browse files
authored
[Model] Add XLMRoBERTaModel in paddlenlp (#9720)
* add xlm_roberta in paddlenlp
1 parent b286544 commit 1d74d62

File tree

11 files changed

+2655
-0
lines changed

11 files changed

+2655
-0
lines changed

paddlenlp/transformers/__init__.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -209,6 +209,9 @@
209209
from .xlm.modeling import *
210210
from .xlm.tokenizer import *
211211
from .xlm.configuration import *
212+
from .xlm_roberta.modeling import *
213+
from .xlm_roberta.tokenizer import *
214+
from .xlm_roberta.configuration import *
212215
from .gau_alpha.modeling import *
213216
from .gau_alpha.tokenizer import *
214217
from .gau_alpha.configuration import *

paddlenlp/transformers/auto/configuration.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -113,6 +113,7 @@
113113
("unimo", "UNIMOConfig"),
114114
("visualglm", "VisualGLMConfig"),
115115
("xlm", "XLMConfig"),
116+
("xlm-roberta", "XLMRobertaConfig"),
116117
("xlnet", "XLNetConfig"),
117118
("yuan", "YuanConfig"),
118119
]
@@ -202,6 +203,7 @@
202203
("unimo", "UNIMO"),
203204
("visualglm", "VisualGLM"),
204205
("xlm", "XLM"),
206+
("xlm-roberta", "XLMRoberta"),
205207
("xlnet", "XLNet"),
206208
("yuan", "Yuan"),
207209
]

paddlenlp/transformers/auto/modeling.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -94,6 +94,7 @@
9494
("UNIMO", "unimo"),
9595
("XLNet", "xlnet"),
9696
("XLM", "xlm"),
97+
("XLMRoberta", "xlm_roberta"),
9798
("GPT", "gpt"),
9899
("GLM", "glm"),
99100
("MT5", "mt5"),

paddlenlp/transformers/auto/tokenizer.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -99,6 +99,7 @@
9999
("squeezebert", "SqueezeBertTokenizer"),
100100
("t5", "T5Tokenizer"),
101101
("xlm", "XLMTokenizer"),
102+
("xlm_roberta", "XLMRobertaTokenizer"),
102103
("xlnet", "XLNetTokenizer"),
103104
("bert_japanese", "BertJapaneseTokenizer"),
104105
("bigbird", "BigBirdTokenizer"),
Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
from .configuration import *
16+
from .modeling import *
17+
from .tokenizer import *
Lines changed: 160 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,160 @@
1+
# coding=utf-8
2+
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
3+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
4+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
5+
#
6+
# Licensed under the Apache License, Version 2.0 (the "License");
7+
# you may not use this file except in compliance with the License.
8+
# You may obtain a copy of the License at
9+
#
10+
# http://www.apache.org/licenses/LICENSE-2.0
11+
#
12+
# Unless required by applicable law or agreed to in writing, software
13+
# distributed under the License is distributed on an "AS IS" BASIS,
14+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15+
# See the License for the specific language governing permissions and
16+
# limitations under the License.
17+
""" XLM-RoBERTa configuration"""
18+
19+
from ..model_utils import PretrainedConfig
20+
21+
__all__ = ["PRETRAINED_INIT_CONFIGURATION", "XLMRobertaConfig"]
22+
23+
PRETRAINED_INIT_CONFIGURATION = {
24+
"hf-internal-testing/tiny-random-onnx-xlm-roberta": {
25+
"attention_probs_dropout_prob": 0.1,
26+
"bos_token_id": 0,
27+
"classifier_dropout": None,
28+
"eos_token_id": 2,
29+
"hidden_act": "gelu",
30+
"hidden_dropout_prob": 0.1,
31+
"hidden_size": 4,
32+
"initializer_range": 0.02,
33+
"intermediate_size": 37,
34+
"layer_norm_eps": 1e-05,
35+
"max_position_embeddings": 514,
36+
"model_type": "xlm-roberta",
37+
"num_attention_heads": 4,
38+
"num_hidden_layers": 5,
39+
"output_past": True,
40+
"pad_token_id": 1,
41+
"position_embedding_type": "absolute",
42+
"dtype": "float32",
43+
"type_vocab_size": 1,
44+
"use_cache": True,
45+
"vocab_size": 250002,
46+
},
47+
}
48+
49+
50+
class XLMRobertaConfig(PretrainedConfig):
51+
r"""
52+
This is the configuration class to store the configuration of a [`XLMRobertaModel`] or a [`TFXLMRobertaModel`]. It
53+
is used to instantiate a XLM-RoBERTa model according to the specified arguments, defining the model architecture.
54+
Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMRoBERTa
55+
[xlm-roberta-base](https://huggingface.co/xlm-roberta-base) architecture.
56+
57+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
58+
documentation from [`PretrainedConfig`] for more information.
59+
60+
61+
Args:
62+
vocab_size (`int`, *optional*, defaults to 30522):
63+
Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be represented by
64+
the `inputs_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`].
65+
hidden_size (`int`, *optional*, defaults to 768):
66+
Dimensionality of the encoder layers and the pooler layer.
67+
num_hidden_layers (`int`, *optional*, defaults to 12):
68+
Number of hidden layers in the Transformer encoder.
69+
num_attention_heads (`int`, *optional*, defaults to 12):
70+
Number of attention heads for each attention layer in the Transformer encoder.
71+
intermediate_size (`int`, *optional*, defaults to 3072):
72+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
73+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
74+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
75+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
76+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
77+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
78+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
79+
The dropout ratio for the attention probabilities.
80+
max_position_embeddings (`int`, *optional*, defaults to 512):
81+
The maximum sequence length that this model might ever be used with. Typically set this to something large
82+
just in case (e.g., 512 or 1024 or 2048).
83+
type_vocab_size (`int`, *optional*, defaults to 2):
84+
The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaModel`] or
85+
[`TFXLMRobertaModel`].
86+
initializer_range (`float`, *optional*, defaults to 0.02):
87+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
88+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
89+
The epsilon used by the layer normalization layers.
90+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
91+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
92+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
93+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
94+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
95+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
96+
is_decoder (`bool`, *optional*, defaults to `False`):
97+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
98+
use_cache (`bool`, *optional*, defaults to `True`):
99+
Whether or not the model should return the last key/values attentions (not used by all models). Only
100+
relevant if `config.is_decoder=True`.
101+
classifier_dropout (`float`, *optional*):
102+
The dropout ratio for the classification head.
103+
104+
Examples:
105+
106+
```python
107+
>>> from paddlenlp.transformers import XLMRobertaConfig, XLMRobertaModel
108+
109+
>>> # Initializing a XLM-RoBERTa xlm-roberta-base style configuration
110+
>>> configuration = XLMRobertaConfig()
111+
112+
>>> # Initializing a model (with random weights) from the xlm-roberta-base style configuration
113+
>>> model = XLMRobertaModel(configuration)
114+
115+
>>> # Accessing the model configuration
116+
>>> configuration = model.config
117+
```"""
118+
119+
model_type = "xlm-roberta"
120+
121+
def __init__(
122+
self,
123+
vocab_size=30522,
124+
hidden_size=768,
125+
num_hidden_layers=12,
126+
num_attention_heads=12,
127+
intermediate_size=3072,
128+
hidden_act="gelu",
129+
hidden_dropout_prob=0.1,
130+
attention_probs_dropout_prob=0.1,
131+
max_position_embeddings=512,
132+
type_vocab_size=2,
133+
initializer_range=0.02,
134+
layer_norm_eps=1e-12,
135+
pad_token_id=1,
136+
bos_token_id=0,
137+
eos_token_id=2,
138+
position_embedding_type="absolute",
139+
use_cache=True,
140+
classifier_dropout=None,
141+
**kwargs,
142+
):
143+
kwargs["return_dict"] = kwargs.pop("return_dict", False)
144+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
145+
146+
self.vocab_size = vocab_size
147+
self.hidden_size = hidden_size
148+
self.num_hidden_layers = num_hidden_layers
149+
self.num_attention_heads = num_attention_heads
150+
self.hidden_act = hidden_act
151+
self.intermediate_size = intermediate_size
152+
self.hidden_dropout_prob = hidden_dropout_prob
153+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
154+
self.max_position_embeddings = max_position_embeddings
155+
self.type_vocab_size = type_vocab_size
156+
self.initializer_range = initializer_range
157+
self.layer_norm_eps = layer_norm_eps
158+
self.position_embedding_type = position_embedding_type
159+
self.use_cache = use_cache
160+
self.classifier_dropout = classifier_dropout

0 commit comments

Comments
 (0)