|  | 
|  | 1 | +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | 
|  | 2 | +// | 
|  | 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | 4 | +// you may not use this file except in compliance with the License. | 
|  | 5 | +// You may obtain a copy of the License at | 
|  | 6 | +// | 
|  | 7 | +//     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 8 | +// | 
|  | 9 | +// Unless required by applicable law or agreed to in writing, software | 
|  | 10 | +// distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 12 | +// See the License for the specific language governing permissions and | 
|  | 13 | +// limitations under the License. | 
|  | 14 | + | 
|  | 15 | +#include "paddle/phi/kernels/sgd_kernel.h" | 
|  | 16 | +#include "paddle/fluid/operators/jit/kernels.h" | 
|  | 17 | +#include "paddle/phi/backends/cpu/cpu_context.h" | 
|  | 18 | +#include "paddle/phi/core/kernel_registry.h" | 
|  | 19 | +#include "paddle/phi/kernels/funcs/eigen/common.h" | 
|  | 20 | + | 
|  | 21 | +namespace phi { | 
|  | 22 | + | 
|  | 23 | +template <typename T> | 
|  | 24 | +void sgd_dense_param_dense_grad_impl(const DenseTensor& param, | 
|  | 25 | +                                     const DenseTensor& learning_rate, | 
|  | 26 | +                                     const DenseTensor& grad, | 
|  | 27 | +                                     DenseTensor* param_out) { | 
|  | 28 | +  const auto sz = param_out->numel(); | 
|  | 29 | +  paddle::operators::jit::sgd_attr_t attr(1, sz, 1, sz, 1); | 
|  | 30 | +  const T* lr = learning_rate.data<T>(); | 
|  | 31 | +  const T* param_data = param.data<T>(); | 
|  | 32 | +  const T* grad_data = grad.data<T>(); | 
|  | 33 | +  int64_t rows_idx = 0; | 
|  | 34 | +  T* out_data = param_out->data<T>(); | 
|  | 35 | + | 
|  | 36 | +  auto sgd = | 
|  | 37 | +      paddle::operators::jit::KernelFuncs<paddle::operators::jit::SgdTuple<T>, | 
|  | 38 | +                                          phi::CPUPlace>::Cache() | 
|  | 39 | +          .At(attr); | 
|  | 40 | +  sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr); | 
|  | 41 | +} | 
|  | 42 | + | 
|  | 43 | +template <> | 
|  | 44 | +void sgd_dense_param_dense_grad_impl<phi::dtype::bfloat16>( | 
|  | 45 | +    const DenseTensor& param, | 
|  | 46 | +    const DenseTensor& learning_rate, | 
|  | 47 | +    const DenseTensor& grad, | 
|  | 48 | +    DenseTensor* param_out) { | 
|  | 49 | +  auto p = EigenVector<phi::dtype::bfloat16>::Flatten(param); | 
|  | 50 | +  auto g = EigenVector<phi::dtype::bfloat16>::Flatten(grad); | 
|  | 51 | +  auto o = EigenVector<phi::dtype::bfloat16>::Flatten(*param_out); | 
|  | 52 | +  const auto* lr = learning_rate.data<phi::dtype::bfloat16>(); | 
|  | 53 | + | 
|  | 54 | +  o = p - lr[0] * g; | 
|  | 55 | +} | 
|  | 56 | + | 
|  | 57 | +template <typename T> | 
|  | 58 | +void sgd_dense_param_sparse_grad_impl(const DenseTensor& param, | 
|  | 59 | +                                      const DenseTensor& learning_rate, | 
|  | 60 | +                                      const SelectedRows& grad, | 
|  | 61 | +                                      DenseTensor* param_out) { | 
|  | 62 | +  const auto& grad_value = grad.value(); | 
|  | 63 | +  const auto& grad_rows = grad.rows(); | 
|  | 64 | +  const T* param_data = param.data<T>(); | 
|  | 65 | +  const T* grad_data = grad_value.data<T>(); | 
|  | 66 | +  const T* lr = learning_rate.data<T>(); | 
|  | 67 | +  const int64_t* rows_data = grad_rows.data(); | 
|  | 68 | +  T* out_data = param_out->data<T>(); | 
|  | 69 | + | 
|  | 70 | +  paddle::operators::jit::sgd_attr_t attr; | 
|  | 71 | +  attr.param_height = param_out->dims()[0]; | 
|  | 72 | +  attr.param_width = param_out->numel() / attr.param_height; | 
|  | 73 | +  attr.grad_height = grad_rows.size();  // note: it is not grad->height() | 
|  | 74 | +  attr.grad_width = grad_value.numel() / attr.grad_height; | 
|  | 75 | +  attr.selected_rows_size = grad_rows.size(); | 
|  | 76 | + | 
|  | 77 | +  auto sgd = | 
|  | 78 | +      paddle::operators::jit::KernelFuncs<paddle::operators::jit::SgdTuple<T>, | 
|  | 79 | +                                          phi::CPUPlace>::Cache() | 
|  | 80 | +          .At(attr); | 
|  | 81 | +  sgd(lr, param_data, grad_data, rows_data, out_data, &attr); | 
|  | 82 | +} | 
|  | 83 | + | 
|  | 84 | +template <> | 
|  | 85 | +void sgd_dense_param_sparse_grad_impl<phi::dtype::bfloat16>( | 
|  | 86 | +    const DenseTensor& param, | 
|  | 87 | +    const DenseTensor& learning_rate, | 
|  | 88 | +    const SelectedRows& grad, | 
|  | 89 | +    DenseTensor* param_out) { | 
|  | 90 | +  const auto& grad_value = grad.value(); | 
|  | 91 | +  const auto& grad_rows = grad.rows(); | 
|  | 92 | +  const auto grad_height = grad.height(); | 
|  | 93 | +  const int64_t grad_val_height = static_cast<int64_t>(grad_rows.size()); | 
|  | 94 | +  const auto grad_width = grad_value.numel() / grad_val_height; | 
|  | 95 | + | 
|  | 96 | +  const auto* grad_data = grad_value.data<phi::dtype::bfloat16>(); | 
|  | 97 | +  auto* out_data = param_out->data<phi::dtype::bfloat16>(); | 
|  | 98 | +  const auto* lr = learning_rate.data<phi::dtype::bfloat16>(); | 
|  | 99 | + | 
|  | 100 | +  for (size_t i = 0; i < grad_rows.size(); ++i) { | 
|  | 101 | +    PADDLE_ENFORCE_LT( | 
|  | 102 | +        grad_rows[i], | 
|  | 103 | +        grad_height, | 
|  | 104 | +        phi::errors::OutOfRange( | 
|  | 105 | +            "Grad rows index value should be less than grad height." | 
|  | 106 | +            "Got [%s], but expected less than [%s]", | 
|  | 107 | +            grad_rows[i], | 
|  | 108 | +            grad_height)); | 
|  | 109 | +    const int64_t row = grad_rows[i]; | 
|  | 110 | +    for (int64_t j = 0; j < grad_width; ++j) { | 
|  | 111 | +      out_data[row * grad_width + j] -= lr[0] * grad_data[i * grad_width + j]; | 
|  | 112 | +    } | 
|  | 113 | +  } | 
|  | 114 | +} | 
|  | 115 | + | 
|  | 116 | +template <typename T, typename Context> | 
|  | 117 | +void SGDDenseKernel(const Context& dev_ctx, | 
|  | 118 | +                    const DenseTensor& param, | 
|  | 119 | +                    const DenseTensor& learning_rate, | 
|  | 120 | +                    const DenseTensor& grad, | 
|  | 121 | +                    paddle::optional<const DenseTensor&> master_param, | 
|  | 122 | +                    bool multi_precision, | 
|  | 123 | +                    DenseTensor* param_out, | 
|  | 124 | +                    DenseTensor* master_param_out) { | 
|  | 125 | +  dev_ctx.template Alloc<T>(param_out); | 
|  | 126 | +  sgd_dense_param_dense_grad_impl<T>(param, learning_rate, grad, param_out); | 
|  | 127 | +} | 
|  | 128 | + | 
|  | 129 | +template <typename T, typename Context> | 
|  | 130 | +void SGDDenseParamSparseGradKernel( | 
|  | 131 | +    const Context& dev_ctx, | 
|  | 132 | +    const DenseTensor& param, | 
|  | 133 | +    const DenseTensor& learning_rate, | 
|  | 134 | +    const SelectedRows& grad, | 
|  | 135 | +    paddle::optional<const DenseTensor&> master_param, | 
|  | 136 | +    bool multi_precision, | 
|  | 137 | +    DenseTensor* param_out, | 
|  | 138 | +    DenseTensor* master_param_out) { | 
|  | 139 | +  dev_ctx.template Alloc<T>(param_out); | 
|  | 140 | +  sgd_dense_param_sparse_grad_impl<T>(param, learning_rate, grad, param_out); | 
|  | 141 | +} | 
|  | 142 | + | 
|  | 143 | +template <typename T, typename Context> | 
|  | 144 | +void SGDSparseParamSparseGradKernel( | 
|  | 145 | +    const Context& dev_ctx, | 
|  | 146 | +    const SelectedRows& param, | 
|  | 147 | +    const DenseTensor& learning_rate, | 
|  | 148 | +    const SelectedRows& grad, | 
|  | 149 | +    paddle::optional<const SelectedRows&> master_param, | 
|  | 150 | +    bool multi_precision, | 
|  | 151 | +    SelectedRows* param_out, | 
|  | 152 | +    SelectedRows* master_param_out) { | 
|  | 153 | +  // for distributed training, a sparse var may be empty, | 
|  | 154 | +  // just skip updating. | 
|  | 155 | +  if (grad.rows().size() == 0) { | 
|  | 156 | +    return; | 
|  | 157 | +  } | 
|  | 158 | + | 
|  | 159 | +  auto param_row_width = param.value().dims()[1]; | 
|  | 160 | +  auto grad_row_width = grad.value().dims()[1]; | 
|  | 161 | +  PADDLE_ENFORCE_EQ( | 
|  | 162 | +      param_row_width, | 
|  | 163 | +      grad_row_width, | 
|  | 164 | +      phi::errors::InvalidArgument( | 
|  | 165 | +          "The param_row in SgdOP should have the same size with grad_row. " | 
|  | 166 | +          "But received param_row's width is [%s], and grad_row's width is " | 
|  | 167 | +          "[%s]", | 
|  | 168 | +          param_row_width, | 
|  | 169 | +          grad_row_width)); | 
|  | 170 | + | 
|  | 171 | +  const auto* lr = learning_rate.data<T>(); | 
|  | 172 | +  const auto* grad_data = grad.value().data<T>(); | 
|  | 173 | +  auto* out_data = param_out->mutable_value()->data<T>(); | 
|  | 174 | +  for (size_t i = 0; i < grad.rows().size(); i++) { | 
|  | 175 | +    int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false); | 
|  | 176 | +    PADDLE_ENFORCE_GE( | 
|  | 177 | +        id_index, | 
|  | 178 | +        static_cast<int64_t>(0), | 
|  | 179 | +        phi::errors::InvalidArgument( | 
|  | 180 | +            "The id in SgdOp should be >= 0. But recevied id_index is [%s]", | 
|  | 181 | +            id_index)); | 
|  | 182 | +    for (int64_t j = 0; j < grad_row_width; j++) { | 
|  | 183 | +      out_data[id_index * grad_row_width + j] -= | 
|  | 184 | +          lr[0] * grad_data[i * grad_row_width + j]; | 
|  | 185 | +    } | 
|  | 186 | +  } | 
|  | 187 | +} | 
|  | 188 | + | 
|  | 189 | +}  // namespace phi | 
|  | 190 | + | 
|  | 191 | +PD_REGISTER_KERNEL(sgd, | 
|  | 192 | +                   CPU, | 
|  | 193 | +                   ALL_LAYOUT, | 
|  | 194 | +                   phi::SGDDenseKernel, | 
|  | 195 | +                   phi::dtype::bfloat16, | 
|  | 196 | +                   float, | 
|  | 197 | +                   double) {} | 
|  | 198 | + | 
|  | 199 | +PD_REGISTER_KERNEL(sgd_dense_param_sparse_grad, | 
|  | 200 | +                   CPU, | 
|  | 201 | +                   ALL_LAYOUT, | 
|  | 202 | +                   phi::SGDDenseParamSparseGradKernel, | 
|  | 203 | +                   phi::dtype::bfloat16, | 
|  | 204 | +                   float, | 
|  | 205 | +                   double) {} | 
|  | 206 | + | 
|  | 207 | +PD_REGISTER_KERNEL(sgd_sparse_param_sparse_grad, | 
|  | 208 | +                   CPU, | 
|  | 209 | +                   ALL_LAYOUT, | 
|  | 210 | +                   phi::SGDSparseParamSparseGradKernel, | 
|  | 211 | +                   phi::dtype::bfloat16, | 
|  | 212 | +                   float, | 
|  | 213 | +                   double) {} | 
0 commit comments