|
| 1 | +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import unittest |
| 16 | + |
| 17 | +import numpy as np |
| 18 | +from utils import dygraph_guard |
| 19 | + |
| 20 | +import paddle |
| 21 | +from paddle import base |
| 22 | + |
| 23 | + |
| 24 | +@unittest.skipIf( |
| 25 | + paddle.core.is_compiled_with_xpu(), |
| 26 | + "xpu does not support dlpack", |
| 27 | +) |
| 28 | +class TestDLPack(unittest.TestCase): |
| 29 | + def test_dlpack_dygraph(self): |
| 30 | + with dygraph_guard(): |
| 31 | + tensor = paddle.to_tensor(np.array([1, 2, 3, 4]).astype("int")) |
| 32 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(tensor) |
| 33 | + out_from_dlpack_v1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 34 | + dlpack_v2 = tensor.__dlpack__() |
| 35 | + out_from_dlpack_v2 = paddle.from_dlpack(dlpack_v2) |
| 36 | + self.assertTrue( |
| 37 | + isinstance(out_from_dlpack_v1, paddle.base.core.eager.Tensor) |
| 38 | + ) |
| 39 | + self.assertTrue( |
| 40 | + isinstance(out_from_dlpack_v2, paddle.base.core.eager.Tensor) |
| 41 | + ) |
| 42 | + self.assertEqual(str(tensor.place), str(out_from_dlpack_v1.place)) |
| 43 | + self.assertEqual(str(tensor.place), str(out_from_dlpack_v2.place)) |
| 44 | + np.testing.assert_array_equal( |
| 45 | + out_from_dlpack_v1.numpy(), np.array([1, 2, 3, 4]).astype("int") |
| 46 | + ) |
| 47 | + np.testing.assert_array_equal( |
| 48 | + out_from_dlpack_v2.numpy(), np.array([1, 2, 3, 4]).astype("int") |
| 49 | + ) |
| 50 | + |
| 51 | + def test_dlpack_tensor_larger_than_2dim(self): |
| 52 | + with dygraph_guard(): |
| 53 | + numpy_data = np.random.randn(4, 5, 6) |
| 54 | + t = paddle.to_tensor(numpy_data) |
| 55 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(t) |
| 56 | + dlpack_v2 = t.__dlpack__() |
| 57 | + out_v1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 58 | + out_v2 = paddle.from_dlpack(dlpack_v2) |
| 59 | + self.assertEqual(str(t.place), str(out_v1.place)) |
| 60 | + self.assertEqual(str(t.place), str(out_v2.place)) |
| 61 | + np.testing.assert_allclose(numpy_data, out_v1.numpy(), rtol=1e-05) |
| 62 | + np.testing.assert_allclose(numpy_data, out_v2.numpy(), rtol=1e-05) |
| 63 | + |
| 64 | + def test_dlpack_dtype_and_place_consistency(self): |
| 65 | + with dygraph_guard(): |
| 66 | + dtypes = [ |
| 67 | + "float16", |
| 68 | + "float32", |
| 69 | + "float64", |
| 70 | + "int8", |
| 71 | + "int16", |
| 72 | + "int32", |
| 73 | + "int64", |
| 74 | + "uint8", |
| 75 | + "bool", |
| 76 | + ] |
| 77 | + places = [paddle.CPUPlace()] |
| 78 | + if paddle.device.is_compiled_with_cuda(): |
| 79 | + places.append(base.CUDAPlace(0)) |
| 80 | + dtypes.append("bfloat16") |
| 81 | + |
| 82 | + data = np.ones((2, 3, 4)) |
| 83 | + for place in places: |
| 84 | + for dtype in dtypes: |
| 85 | + x = paddle.to_tensor(data, dtype=dtype, place=place) |
| 86 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(x) |
| 87 | + o_v1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 88 | + dlpack_v2 = x.__dlpack__() |
| 89 | + o_v2 = paddle.from_dlpack(dlpack_v2) |
| 90 | + self.assertEqual(x.dtype, o_v1.dtype) |
| 91 | + self.assertEqual(x.dtype, o_v2.dtype) |
| 92 | + np.testing.assert_allclose( |
| 93 | + x.numpy(), o_v1.numpy(), rtol=1e-05 |
| 94 | + ) |
| 95 | + np.testing.assert_allclose( |
| 96 | + x.numpy(), o_v2.numpy(), rtol=1e-05 |
| 97 | + ) |
| 98 | + self.assertEqual(str(x.place), str(o_v1.place)) |
| 99 | + self.assertEqual(str(x.place), str(o_v2.place)) |
| 100 | + |
| 101 | + complex_dtypes = ["complex64", "complex128"] |
| 102 | + for place in places: |
| 103 | + for dtype in complex_dtypes: |
| 104 | + x = paddle.to_tensor( |
| 105 | + [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]], |
| 106 | + dtype=dtype, |
| 107 | + place=place, |
| 108 | + ) |
| 109 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(x) |
| 110 | + o_v1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 111 | + dlpack_v2 = x.__dlpack__() |
| 112 | + o_v2 = paddle.from_dlpack(dlpack_v2) |
| 113 | + self.assertEqual(x.dtype, o_v1.dtype) |
| 114 | + self.assertEqual(x.dtype, o_v2.dtype) |
| 115 | + np.testing.assert_allclose( |
| 116 | + x.numpy(), o_v1.numpy(), rtol=1e-05 |
| 117 | + ) |
| 118 | + np.testing.assert_allclose( |
| 119 | + x.numpy(), o_v2.numpy(), rtol=1e-05 |
| 120 | + ) |
| 121 | + self.assertEqual(str(x.place), str(o_v1.place)) |
| 122 | + self.assertEqual(str(x.place), str(o_v2.place)) |
| 123 | + |
| 124 | + def test_dlpack_deletion(self): |
| 125 | + # See Paddle issue 47171 |
| 126 | + with dygraph_guard(): |
| 127 | + places = [base.CPUPlace()] |
| 128 | + if paddle.is_compiled_with_cuda(): |
| 129 | + places.append(base.CUDAPlace(0)) |
| 130 | + for place in places: |
| 131 | + for _ in range(4): |
| 132 | + a = paddle.rand(shape=[3, 5], dtype="float32").to( |
| 133 | + device=place |
| 134 | + ) |
| 135 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(a) |
| 136 | + dlpack_v2 = a.__dlpack__() |
| 137 | + b1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 138 | + b2 = paddle.from_dlpack(dlpack_v2) |
| 139 | + self.assertEqual(str(a.place), str(b1.place)) |
| 140 | + self.assertEqual(str(a.place), str(b2.place)) |
| 141 | + |
| 142 | + def test_to_dlpack_for_loop(self): |
| 143 | + # See Paddle issue 50120 |
| 144 | + with dygraph_guard(): |
| 145 | + places = [base.CPUPlace()] |
| 146 | + if paddle.is_compiled_with_cuda(): |
| 147 | + places.append(base.CUDAPlace(0)) |
| 148 | + for place in places: |
| 149 | + for _ in range(4): |
| 150 | + x = paddle.rand([3, 5]).to(device=place) |
| 151 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(x) |
| 152 | + dlpack_v2 = x.__dlpack__() |
| 153 | + |
| 154 | + def test_to_dlpack_modification(self): |
| 155 | + # See Paddle issue 50120 |
| 156 | + with dygraph_guard(): |
| 157 | + places = [base.CPUPlace()] |
| 158 | + if paddle.is_compiled_with_cuda(): |
| 159 | + places.append(base.CUDAPlace(0)) |
| 160 | + for place in places: |
| 161 | + for _ in range(4): |
| 162 | + x = paddle.rand([3, 5]).to(device=place) |
| 163 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(x) |
| 164 | + dlpack_v2 = x.__dlpack__() |
| 165 | + y1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 166 | + y2 = paddle.from_dlpack(dlpack_v2) |
| 167 | + y1[1:2, 2:5] = 2.0 |
| 168 | + y2[1:2, 2:5] = 2.0 |
| 169 | + np.testing.assert_allclose(x.numpy(), y1.numpy()) |
| 170 | + np.testing.assert_allclose(x.numpy(), y2.numpy()) |
| 171 | + self.assertEqual(str(x.place), str(y1.place)) |
| 172 | + self.assertEqual(str(x.place), str(y2.place)) |
| 173 | + |
| 174 | + def test_to_dlpack_data_ptr_consistency(self): |
| 175 | + # See Paddle issue 50120 |
| 176 | + with dygraph_guard(): |
| 177 | + places = [base.CPUPlace()] |
| 178 | + if paddle.is_compiled_with_cuda(): |
| 179 | + places.append(base.CUDAPlace(0)) |
| 180 | + for place in places: |
| 181 | + for _ in range(4): |
| 182 | + x = paddle.rand([3, 5]).to(device=place) |
| 183 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(x) |
| 184 | + dlpack_v2 = x.__dlpack__() |
| 185 | + y1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 186 | + y2 = paddle.from_dlpack(dlpack_v2) |
| 187 | + |
| 188 | + self.assertEqual(x.data_ptr(), y1.data_ptr()) |
| 189 | + self.assertEqual(x.data_ptr(), y2.data_ptr()) |
| 190 | + self.assertEqual(str(x.place), str(y1.place)) |
| 191 | + self.assertEqual(str(x.place), str(y2.place)) |
| 192 | + |
| 193 | + def test_to_dlpack_strides_consistency(self): |
| 194 | + with dygraph_guard(): |
| 195 | + places = [base.CPUPlace()] |
| 196 | + if paddle.is_compiled_with_cuda(): |
| 197 | + places.append(base.CUDAPlace(0)) |
| 198 | + for place in places: |
| 199 | + for _ in range(4): |
| 200 | + x = paddle.rand([10, 10]).to(device=place) |
| 201 | + x_strided = x[::2, ::2] |
| 202 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(x_strided) |
| 203 | + dlpack_v2 = x_strided.__dlpack__() |
| 204 | + y1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 205 | + y2 = paddle.from_dlpack(dlpack_v2) |
| 206 | + |
| 207 | + self.assertEqual(x_strided.strides, y1.strides) |
| 208 | + self.assertEqual(x_strided.strides, y2.strides) |
| 209 | + self.assertEqual(str(x_strided.place), str(y1.place)) |
| 210 | + self.assertEqual(str(x_strided.place), str(y2.place)) |
| 211 | + np.testing.assert_equal(x_strided.numpy(), y1.numpy()) |
| 212 | + np.testing.assert_equal(x_strided.numpy(), y2.numpy()) |
| 213 | + |
| 214 | + def test_to_dlpack_from_zero_dim(self): |
| 215 | + with dygraph_guard(): |
| 216 | + places = [base.CPUPlace()] |
| 217 | + if paddle.is_compiled_with_cuda(): |
| 218 | + places.append(base.CUDAPlace(0)) |
| 219 | + for place in places: |
| 220 | + for _ in range(4): |
| 221 | + x = paddle.to_tensor(1.0, place=place) |
| 222 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(x) |
| 223 | + dlpack_v2 = x.__dlpack__() |
| 224 | + y1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 225 | + y2 = paddle.from_dlpack(dlpack_v2) |
| 226 | + self.assertEqual(x.data_ptr(), y1.data_ptr()) |
| 227 | + self.assertEqual(x.data_ptr(), y2.data_ptr()) |
| 228 | + self.assertEqual(str(x.place), str(y1.place)) |
| 229 | + self.assertEqual(str(x.place), str(y2.place)) |
| 230 | + self.assertEqual(y1.shape, []) |
| 231 | + self.assertEqual(y2.shape, []) |
| 232 | + self.assertEqual(y1.numel().item(), 1) |
| 233 | + self.assertEqual(y2.numel().item(), 1) |
| 234 | + np.testing.assert_array_equal(x.numpy(), y1.numpy()) |
| 235 | + np.testing.assert_array_equal(x.numpy(), y2.numpy()) |
| 236 | + |
| 237 | + def test_to_dlpack_from_zero_size(self): |
| 238 | + with dygraph_guard(): |
| 239 | + places = [base.CPUPlace()] |
| 240 | + if paddle.is_compiled_with_cuda(): |
| 241 | + places.append(base.CUDAPlace(0)) |
| 242 | + for place in places: |
| 243 | + for _ in range(4): |
| 244 | + x = paddle.zeros([0, 10]).to(device=place) |
| 245 | + dlpack_v1 = paddle.utils.dlpack.to_dlpack(x) |
| 246 | + dlpack_v2 = x.__dlpack__() |
| 247 | + y1 = paddle.utils.dlpack.from_dlpack(dlpack_v1) |
| 248 | + y2 = paddle.from_dlpack(dlpack_v2) |
| 249 | + self.assertEqual(x.data_ptr(), y1.data_ptr()) |
| 250 | + self.assertEqual(x.data_ptr(), y2.data_ptr()) |
| 251 | + self.assertEqual(str(x.place), str(y1.place)) |
| 252 | + self.assertEqual(str(x.place), str(y2.place)) |
| 253 | + self.assertEqual(y1.shape, [0, 10]) |
| 254 | + self.assertEqual(y2.shape, [0, 10]) |
| 255 | + self.assertEqual(y1.numel().item(), 0) |
| 256 | + self.assertEqual(y2.numel().item(), 0) |
| 257 | + np.testing.assert_array_equal(x.numpy(), y1.numpy()) |
| 258 | + np.testing.assert_array_equal(x.numpy(), y2.numpy()) |
| 259 | + |
| 260 | + def test_dlpack_with_custom_stream(self): |
| 261 | + if not paddle.is_compiled_with_cuda(): |
| 262 | + self.skipTest("Test requires CUDA support.") |
| 263 | + with dygraph_guard(): |
| 264 | + paddle.set_device('gpu:0') |
| 265 | + s1 = paddle.device.Stream() |
| 266 | + s2 = paddle.device.Stream() |
| 267 | + e = paddle.device.Event() |
| 268 | + s2.wait_event(e) |
| 269 | + x = paddle.to_tensor([1, 2, 3], dtype='float32') |
| 270 | + s1.synchronize() |
| 271 | + dlpack_capsule = x.__dlpack__(s1) |
| 272 | + y = paddle.from_dlpack(dlpack_capsule) |
| 273 | + np.testing.assert_array_equal(x.numpy(), y.numpy()) |
| 274 | + self.assertTrue(s1.query(), "Stream s1 did not complete all tasks.") |
| 275 | + self.assertTrue(s2.query(), "Stream s2 did not complete all tasks.") |
| 276 | + |
| 277 | + |
| 278 | +@unittest.skipIf( |
| 279 | + paddle.core.is_compiled_with_xpu(), |
| 280 | + "xpu does not support dlpack", |
| 281 | +) |
| 282 | +class TestRaiseError(unittest.TestCase): |
| 283 | + def test_dlpack_invalid_sparse(self): |
| 284 | + sparse_tensor = paddle.sparse.sparse_coo_tensor( |
| 285 | + indices=[[0]], values=[1], shape=[3] |
| 286 | + ) |
| 287 | + with self.assertRaises(AttributeError): |
| 288 | + sparse_tensor.__dlpack__() |
| 289 | + |
| 290 | + def test_dlpack_requires_grad(self): |
| 291 | + tensor_with_grad = paddle.to_tensor( |
| 292 | + [1.0, 2.0, 3.0], stop_gradient=False |
| 293 | + ) |
| 294 | + with self.assertRaises(RuntimeError): |
| 295 | + tensor_with_grad.__dlpack__() |
| 296 | + |
| 297 | + |
| 298 | +if __name__ == "__main__": |
| 299 | + unittest.main() |
0 commit comments