|
| 1 | +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from __future__ import division |
| 16 | +from __future__ import print_function |
| 17 | + |
| 18 | +import paddle |
| 19 | +import paddle.nn as nn |
| 20 | +import paddle.nn.functional as F |
| 21 | + |
| 22 | +from paddle.nn import Conv2D, Linear, Dropout |
| 23 | +from paddle.nn import MaxPool2D, AvgPool2D, AdaptiveAvgPool2D |
| 24 | +from paddle.nn.initializer import Uniform |
| 25 | +from paddle.fluid.param_attr import ParamAttr |
| 26 | +from paddle.utils.download import get_weights_path_from_url |
| 27 | + |
| 28 | +__all__ = [] |
| 29 | + |
| 30 | +model_urls = { |
| 31 | + "googlenet": |
| 32 | + ("https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams", |
| 33 | + "80c06f038e905c53ab32c40eca6e26ae") |
| 34 | +} |
| 35 | + |
| 36 | + |
| 37 | +def xavier(channels, filter_size): |
| 38 | + stdv = (3.0 / (filter_size**2 * channels))**0.5 |
| 39 | + param_attr = ParamAttr(initializer=Uniform(-stdv, stdv)) |
| 40 | + return param_attr |
| 41 | + |
| 42 | + |
| 43 | +class ConvLayer(nn.Layer): |
| 44 | + def __init__(self, |
| 45 | + num_channels, |
| 46 | + num_filters, |
| 47 | + filter_size, |
| 48 | + stride=1, |
| 49 | + groups=1): |
| 50 | + super(ConvLayer, self).__init__() |
| 51 | + |
| 52 | + self._conv = Conv2D( |
| 53 | + in_channels=num_channels, |
| 54 | + out_channels=num_filters, |
| 55 | + kernel_size=filter_size, |
| 56 | + stride=stride, |
| 57 | + padding=(filter_size - 1) // 2, |
| 58 | + groups=groups, |
| 59 | + bias_attr=False) |
| 60 | + |
| 61 | + def forward(self, inputs): |
| 62 | + y = self._conv(inputs) |
| 63 | + return y |
| 64 | + |
| 65 | + |
| 66 | +class Inception(nn.Layer): |
| 67 | + def __init__(self, input_channels, output_channels, filter1, filter3R, |
| 68 | + filter3, filter5R, filter5, proj): |
| 69 | + super(Inception, self).__init__() |
| 70 | + |
| 71 | + self._conv1 = ConvLayer(input_channels, filter1, 1) |
| 72 | + self._conv3r = ConvLayer(input_channels, filter3R, 1) |
| 73 | + self._conv3 = ConvLayer(filter3R, filter3, 3) |
| 74 | + self._conv5r = ConvLayer(input_channels, filter5R, 1) |
| 75 | + self._conv5 = ConvLayer(filter5R, filter5, 5) |
| 76 | + self._pool = MaxPool2D(kernel_size=3, stride=1, padding=1) |
| 77 | + |
| 78 | + self._convprj = ConvLayer(input_channels, proj, 1) |
| 79 | + |
| 80 | + def forward(self, inputs): |
| 81 | + conv1 = self._conv1(inputs) |
| 82 | + |
| 83 | + conv3r = self._conv3r(inputs) |
| 84 | + conv3 = self._conv3(conv3r) |
| 85 | + |
| 86 | + conv5r = self._conv5r(inputs) |
| 87 | + conv5 = self._conv5(conv5r) |
| 88 | + |
| 89 | + pool = self._pool(inputs) |
| 90 | + convprj = self._convprj(pool) |
| 91 | + |
| 92 | + cat = paddle.concat([conv1, conv3, conv5, convprj], axis=1) |
| 93 | + cat = F.relu(cat) |
| 94 | + return cat |
| 95 | + |
| 96 | + |
| 97 | +class GoogLeNet(nn.Layer): |
| 98 | + """GoogLeNet (Inception v1) model architecture from |
| 99 | + `"Going Deeper with Convolutions" <https://arxiv.org/pdf/1409.4842.pdf>`_ |
| 100 | + |
| 101 | + Args: |
| 102 | + num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer |
| 103 | + will not be defined. Default: 1000. |
| 104 | + with_pool (bool, optional): use pool before the last fc layer or not. Default: True. |
| 105 | +
|
| 106 | + Examples: |
| 107 | + .. code-block:: python |
| 108 | +
|
| 109 | + import paddle |
| 110 | + from paddle.vision.models import GoogLeNet |
| 111 | +
|
| 112 | + # build model |
| 113 | + model = GoogLeNet() |
| 114 | +
|
| 115 | + x = paddle.rand([1, 3, 224, 224]) |
| 116 | + out, out1, out2 = model(x) |
| 117 | +
|
| 118 | + print(out.shape) |
| 119 | + """ |
| 120 | + |
| 121 | + def __init__(self, num_classes=1000, with_pool=True): |
| 122 | + super(GoogLeNet, self).__init__() |
| 123 | + self.num_classes = num_classes |
| 124 | + self.with_pool = with_pool |
| 125 | + |
| 126 | + self._conv = ConvLayer(3, 64, 7, 2) |
| 127 | + self._pool = MaxPool2D(kernel_size=3, stride=2) |
| 128 | + self._conv_1 = ConvLayer(64, 64, 1) |
| 129 | + self._conv_2 = ConvLayer(64, 192, 3) |
| 130 | + |
| 131 | + self._ince3a = Inception(192, 192, 64, 96, 128, 16, 32, 32) |
| 132 | + self._ince3b = Inception(256, 256, 128, 128, 192, 32, 96, 64) |
| 133 | + |
| 134 | + self._ince4a = Inception(480, 480, 192, 96, 208, 16, 48, 64) |
| 135 | + self._ince4b = Inception(512, 512, 160, 112, 224, 24, 64, 64) |
| 136 | + self._ince4c = Inception(512, 512, 128, 128, 256, 24, 64, 64) |
| 137 | + self._ince4d = Inception(512, 512, 112, 144, 288, 32, 64, 64) |
| 138 | + self._ince4e = Inception(528, 528, 256, 160, 320, 32, 128, 128) |
| 139 | + |
| 140 | + self._ince5a = Inception(832, 832, 256, 160, 320, 32, 128, 128) |
| 141 | + self._ince5b = Inception(832, 832, 384, 192, 384, 48, 128, 128) |
| 142 | + |
| 143 | + if with_pool: |
| 144 | + # out |
| 145 | + self._pool_5 = AdaptiveAvgPool2D(1) |
| 146 | + # out1 |
| 147 | + self._pool_o1 = AvgPool2D(kernel_size=5, stride=3) |
| 148 | + # out2 |
| 149 | + self._pool_o2 = AvgPool2D(kernel_size=5, stride=3) |
| 150 | + |
| 151 | + if num_classes > 0: |
| 152 | + # out |
| 153 | + self._drop = Dropout(p=0.4, mode="downscale_in_infer") |
| 154 | + self._fc_out = Linear( |
| 155 | + 1024, num_classes, weight_attr=xavier(1024, 1)) |
| 156 | + |
| 157 | + # out1 |
| 158 | + self._conv_o1 = ConvLayer(512, 128, 1) |
| 159 | + self._fc_o1 = Linear(1152, 1024, weight_attr=xavier(2048, 1)) |
| 160 | + self._drop_o1 = Dropout(p=0.7, mode="downscale_in_infer") |
| 161 | + self._out1 = Linear(1024, num_classes, weight_attr=xavier(1024, 1)) |
| 162 | + |
| 163 | + # out2 |
| 164 | + self._conv_o2 = ConvLayer(528, 128, 1) |
| 165 | + self._fc_o2 = Linear(1152, 1024, weight_attr=xavier(2048, 1)) |
| 166 | + self._drop_o2 = Dropout(p=0.7, mode="downscale_in_infer") |
| 167 | + self._out2 = Linear(1024, num_classes, weight_attr=xavier(1024, 1)) |
| 168 | + |
| 169 | + def forward(self, inputs): |
| 170 | + x = self._conv(inputs) |
| 171 | + x = self._pool(x) |
| 172 | + x = self._conv_1(x) |
| 173 | + x = self._conv_2(x) |
| 174 | + x = self._pool(x) |
| 175 | + |
| 176 | + x = self._ince3a(x) |
| 177 | + x = self._ince3b(x) |
| 178 | + x = self._pool(x) |
| 179 | + |
| 180 | + ince4a = self._ince4a(x) |
| 181 | + x = self._ince4b(ince4a) |
| 182 | + x = self._ince4c(x) |
| 183 | + ince4d = self._ince4d(x) |
| 184 | + x = self._ince4e(ince4d) |
| 185 | + x = self._pool(x) |
| 186 | + |
| 187 | + x = self._ince5a(x) |
| 188 | + ince5b = self._ince5b(x) |
| 189 | + |
| 190 | + out, out1, out2 = ince5b, ince4a, ince4d |
| 191 | + |
| 192 | + if self.with_pool: |
| 193 | + out = self._pool_5(out) |
| 194 | + out1 = self._pool_o1(out1) |
| 195 | + out2 = self._pool_o2(out2) |
| 196 | + |
| 197 | + if self.num_classes > 0: |
| 198 | + out = self._drop(out) |
| 199 | + out = paddle.squeeze(out, axis=[2, 3]) |
| 200 | + out = self._fc_out(out) |
| 201 | + |
| 202 | + out1 = self._conv_o1(out1) |
| 203 | + out1 = paddle.flatten(out1, start_axis=1, stop_axis=-1) |
| 204 | + out1 = self._fc_o1(out1) |
| 205 | + out1 = F.relu(out1) |
| 206 | + out1 = self._drop_o1(out1) |
| 207 | + out1 = self._out1(out1) |
| 208 | + |
| 209 | + out2 = self._conv_o2(out2) |
| 210 | + out2 = paddle.flatten(out2, start_axis=1, stop_axis=-1) |
| 211 | + out2 = self._fc_o2(out2) |
| 212 | + out2 = self._drop_o2(out2) |
| 213 | + out2 = self._out2(out2) |
| 214 | + |
| 215 | + return [out, out1, out2] |
| 216 | + |
| 217 | + |
| 218 | +def googlenet(pretrained=False, **kwargs): |
| 219 | + """GoogLeNet (Inception v1) model architecture from |
| 220 | + `"Going Deeper with Convolutions" <https://arxiv.org/pdf/1409.4842.pdf>`_ |
| 221 | + |
| 222 | + Args: |
| 223 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 224 | +
|
| 225 | + Examples: |
| 226 | + .. code-block:: python |
| 227 | +
|
| 228 | + import paddle |
| 229 | + from paddle.vision.models import googlenet |
| 230 | +
|
| 231 | + # build model |
| 232 | + model = googlenet() |
| 233 | +
|
| 234 | + # build model and load imagenet pretrained weight |
| 235 | + # model = googlenet(pretrained=True) |
| 236 | +
|
| 237 | + x = paddle.rand([1, 3, 224, 224]) |
| 238 | + out, out1, out2 = model(x) |
| 239 | +
|
| 240 | + print(out.shape) |
| 241 | + """ |
| 242 | + model = GoogLeNet(**kwargs) |
| 243 | + arch = "googlenet" |
| 244 | + if pretrained: |
| 245 | + assert ( |
| 246 | + arch in model_urls |
| 247 | + ), "{} model do not have a pretrained model now, you should set pretrained=False".format( |
| 248 | + arch) |
| 249 | + weight_path = get_weights_path_from_url(model_urls[arch][0], |
| 250 | + model_urls[arch][1]) |
| 251 | + |
| 252 | + param = paddle.load(weight_path) |
| 253 | + model.set_dict(param) |
| 254 | + return model |
0 commit comments