|
35 | 35 | import numpy.typing as npt |
36 | 36 |
|
37 | 37 | from paddle import CPUPlace, CUDAPinnedPlace, CUDAPlace, Tensor |
38 | | - from paddle._typing import DTypeLike, NumbericSequence, ShapeLike |
| 38 | + from paddle._typing import DTypeLike, NumericSequence, ShapeLike |
39 | 39 |
|
40 | 40 | __all__ = [ |
41 | 41 | 'sparse_coo_tensor', |
@@ -87,7 +87,7 @@ def sparse_coo_tensor( |
87 | 87 | | npt.NDArray[np.int_] |
88 | 88 | | Tensor |
89 | 89 | ), |
90 | | - values: NumbericSequence | npt.NDArray[Any] | Tensor, |
| 90 | + values: NumericSequence | npt.NDArray[Any] | Tensor, |
91 | 91 | shape: ShapeLike | None = None, |
92 | 92 | dtype: DTypeLike | None = None, |
93 | 93 | place: CPUPlace | CUDAPinnedPlace | CUDAPlace | str | None = None, |
@@ -220,7 +220,7 @@ def _infer_dense_csr_shape(crows, cols): |
220 | 220 | def sparse_csr_tensor( |
221 | 221 | crows: list[int] | tuple[int, ...] | npt.NDArray[np.int_] | Tensor, |
222 | 222 | cols: list[int] | tuple[int, ...] | npt.NDArray[np.int_] | Tensor, |
223 | | - values: NumbericSequence | npt.NDArray[Any] | Tensor, |
| 223 | + values: NumericSequence | npt.NDArray[Any] | Tensor, |
224 | 224 | shape: ShapeLike | None = None, |
225 | 225 | dtype: DTypeLike | None = None, |
226 | 226 | place: CPUPlace | CUDAPinnedPlace | CUDAPlace | str | None = None, |
|
0 commit comments