@@ -37,18 +37,17 @@ def check_sgd_optimizer(optimizer_attr):
3737 mul_x = block .create_parameter (
3838 dtype = "float32" ,
3939 shape = [5 , 10 ],
40- lod_level = 0 ,
4140 name = "mul.x" ,
4241 optimize_attr = optimizer_attr ,
4342 )
4443 mul_y = block .create_var (
45- dtype = "float32" , shape = [10 , 8 ], lod_level = 0 , name = "mul.y"
44+ dtype = "float32" , shape = [10 , 8 ], name = "mul.y"
4645 )
4746 mul_out = block .create_var (
48- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "mul.out"
47+ dtype = "float32" , shape = [5 , 8 ], name = "mul.out"
4948 )
5049 mean_out = block .create_var (
51- dtype = "float32" , shape = [1 ], lod_level = 0 , name = "mean.out"
50+ dtype = "float32" , shape = [1 ], name = "mean.out"
5251 )
5352 block .append_op (
5453 type = "mul" ,
@@ -81,18 +80,17 @@ def check_sgd_optimizer(optimizer_attr):
8180 mul_x = block .create_parameter (
8281 dtype = "float32" ,
8382 shape = [5 , 10 ],
84- lod_level = 0 ,
8583 name = "mul.x" ,
8684 optimize_attr = optimizer_attr ,
8785 )
8886 mul_y = block .create_var (
89- dtype = "float32" , shape = [10 , 8 ], lod_level = 0 , name = "mul.y"
87+ dtype = "float32" , shape = [10 , 8 ], name = "mul.y"
9088 )
9189 mul_out = block .create_var (
92- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "mul.out"
90+ dtype = "float32" , shape = [5 , 8 ], name = "mul.out"
9391 )
9492 mean_out = block .create_var (
95- dtype = "float32" , shape = [1 ], lod_level = 0 , name = "mean.out"
93+ dtype = "float32" , shape = [1 ], name = "mean.out"
9694 )
9795 block .append_op (
9896 type = "mul" ,
@@ -133,15 +131,12 @@ def test_vanilla_momentum_optimizer(self):
133131 mul_x = block .create_parameter (
134132 dtype = "float32" ,
135133 shape = [5 , 10 ],
136- lod_level = 0 ,
137134 name = "mul.x" ,
138135 optimize_attr = {'learning_rate' : 1.1 },
139136 )
140- mul_y = block .create_var (
141- dtype = "float32" , shape = [10 , 8 ], lod_level = 0 , name = "mul.y"
142- )
137+ mul_y = block .create_var (dtype = "float32" , shape = [10 , 8 ], name = "mul.y" )
143138 mul_out = block .create_var (
144- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "mul.out"
139+ dtype = "float32" , shape = [5 , 8 ], name = "mul.out"
145140 )
146141 block .append_op (
147142 type = "mul" ,
@@ -153,9 +148,7 @@ def test_vanilla_momentum_optimizer(self):
153148 momentum_optimizer = self .MockMomentum (
154149 learning_rate = learning_rate , momentum = 0.2
155150 )
156- mean_out = block .create_var (
157- dtype = "float32" , shape = [1 ], lod_level = 0 , name = "mean.out"
158- )
151+ mean_out = block .create_var (dtype = "float32" , shape = [1 ], name = "mean.out" )
159152 block .append_op (
160153 type = "mean" , inputs = {"X" : mul_out }, outputs = {"Out" : mean_out }
161154 )
@@ -192,25 +185,20 @@ def test_nesterov_momentum_optimizer(self):
192185 mul_x = block .create_parameter (
193186 dtype = "float32" ,
194187 shape = [5 , 10 ],
195- lod_level = 0 ,
196188 name = "mul.x" ,
197189 optimize_attr = {'learning_rate' : 1.1 },
198190 )
199- mul_y = block .create_var (
200- dtype = "float32" , shape = [10 , 8 ], lod_level = 0 , name = "mul.y"
201- )
191+ mul_y = block .create_var (dtype = "float32" , shape = [10 , 8 ], name = "mul.y" )
202192 mul_out = block .create_var (
203- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "mul.out"
193+ dtype = "float32" , shape = [5 , 8 ], name = "mul.out"
204194 )
205195 block .append_op (
206196 type = "mul" ,
207197 inputs = {"X" : mul_x , "Y" : mul_y },
208198 outputs = {"Out" : mul_out },
209199 attrs = {"x_num_col_dims" : 1 },
210200 )
211- mean_out = block .create_var (
212- dtype = "float32" , shape = [1 ], lod_level = 0 , name = "mean.out"
213- )
201+ mean_out = block .create_var (dtype = "float32" , shape = [1 ], name = "mean.out" )
214202 block .append_op (
215203 type = "mean" , inputs = {"X" : mul_out }, outputs = {"Out" : mean_out }
216204 )
@@ -263,25 +251,20 @@ def test_adam_optimizer(self):
263251 mul_x = block .create_parameter (
264252 dtype = "float32" ,
265253 shape = [5 , 10 ],
266- lod_level = 0 ,
267254 name = "mul.x" ,
268255 optimize_attr = {'learning_rate' : 1.1 },
269256 )
270- mul_y = block .create_var (
271- dtype = "float32" , shape = [10 , 8 ], lod_level = 0 , name = "mul.y"
272- )
257+ mul_y = block .create_var (dtype = "float32" , shape = [10 , 8 ], name = "mul.y" )
273258 mul_out = block .create_var (
274- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "mul.out"
259+ dtype = "float32" , shape = [5 , 8 ], name = "mul.out"
275260 )
276261 block .append_op (
277262 type = "mul" ,
278263 inputs = {"X" : mul_x , "Y" : mul_y },
279264 outputs = {"Out" : mul_out },
280265 attrs = {"x_num_col_dims" : 1 },
281266 )
282- mean_out = block .create_var (
283- dtype = "float32" , shape = [1 ], lod_level = 0 , name = "mean.out"
284- )
267+ mean_out = block .create_var (dtype = "float32" , shape = [1 ], name = "mean.out" )
285268 block .append_op (
286269 type = "mean" , inputs = {"X" : mul_out }, outputs = {"Out" : mean_out }
287270 )
@@ -321,45 +304,32 @@ def net(self, return_input=False, with_dropout=False, with_seed=False):
321304 program = framework .Program ()
322305 block = program .global_block ()
323306 mul_x = block .create_parameter (
324- dtype = "float32" , shape = [5 , 10 ], lod_level = 0 , name = "mul.x"
325- )
326- mul_y = block .create_var (
327- dtype = "float32" , shape = [10 , 8 ], lod_level = 0 , name = "mul.y"
307+ dtype = "float32" , shape = [5 , 10 ], name = "mul.x"
328308 )
309+ mul_y = block .create_var (dtype = "float32" , shape = [10 , 8 ], name = "mul.y" )
329310 mul_out = block .create_var (
330- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "mul.out"
311+ dtype = "float32" , shape = [5 , 8 ], name = "mul.out"
331312 )
332313
333314 if with_dropout is True :
334315 mul_out_drop = block .create_var (
335316 dtype = "float32" ,
336317 shape = [5 , 8 ],
337- lod_level = 0 ,
338318 name = "mul.out.dropout" ,
339319 )
340320 mul_out_mask = block .create_var (
341- dtype = "uint8" , shape = [5 , 8 ], lod_level = 0 , name = "mul.out.mask"
321+ dtype = "uint8" , shape = [5 , 8 ], name = "mul.out.mask"
342322 )
343323 if with_seed is True :
344324 seed_out = block .create_var (
345325 dtype = "int32" , shape = [1 ], name = "seed.out"
346326 )
347327
348- b1 = block .create_parameter (
349- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "b1"
350- )
351- b1_out = block .create_var (
352- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "b1_out"
353- )
354- b2 = block .create_parameter (
355- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "b2"
356- )
357- b2_out = block .create_var (
358- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "b2_out"
359- )
360- mean_out = block .create_var (
361- dtype = "float32" , shape = [1 ], lod_level = 0 , name = "mean.out"
362- )
328+ b1 = block .create_parameter (dtype = "float32" , shape = [5 , 8 ], name = "b1" )
329+ b1_out = block .create_var (dtype = "float32" , shape = [5 , 8 ], name = "b1_out" )
330+ b2 = block .create_parameter (dtype = "float32" , shape = [5 , 8 ], name = "b2" )
331+ b2_out = block .create_var (dtype = "float32" , shape = [5 , 8 ], name = "b2_out" )
332+ mean_out = block .create_var (dtype = "float32" , shape = [1 ], name = "mean.out" )
363333 block .append_op (
364334 type = "mul" ,
365335 inputs = {"X" : mul_x , "Y" : mul_y },
@@ -927,23 +897,15 @@ def net(self):
927897 program = framework .Program ()
928898 block = program .global_block ()
929899 mul_x = block .create_parameter (
930- dtype = "float32" , shape = [5 , 10 ], lod_level = 0 , name = "mul.x"
931- )
932- mul_y = block .create_var (
933- dtype = "float32" , shape = [10 , 8 ], lod_level = 0 , name = "mul.y"
900+ dtype = "float32" , shape = [5 , 10 ], name = "mul.x"
934901 )
902+ mul_y = block .create_var (dtype = "float32" , shape = [10 , 8 ], name = "mul.y" )
935903 mul_out = block .create_var (
936- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "mul.out"
937- )
938- b1 = block .create_parameter (
939- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "b1"
940- )
941- b1_out = block .create_var (
942- dtype = "float32" , shape = [5 , 8 ], lod_level = 0 , name = "b1_out"
943- )
944- mean_out = block .create_var (
945- dtype = "float32" , shape = [1 ], lod_level = 0 , name = "mean.out"
904+ dtype = "float32" , shape = [5 , 8 ], name = "mul.out"
946905 )
906+ b1 = block .create_parameter (dtype = "float32" , shape = [5 , 8 ], name = "b1" )
907+ b1_out = block .create_var (dtype = "float32" , shape = [5 , 8 ], name = "b1_out" )
908+ mean_out = block .create_var (dtype = "float32" , shape = [1 ], name = "mean.out" )
947909 block .append_op (
948910 type = "mul" ,
949911 inputs = {"X" : mul_x , "Y" : mul_y },
0 commit comments