Skip to content

Commit 1589b58

Browse files
Basic Flux Schnell and Flux Dev model implementation.
1 parent 7ad574b commit 1589b58

File tree

12 files changed

+624
-3
lines changed

12 files changed

+624
-3
lines changed

comfy/latent_formats.py

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -139,3 +139,14 @@ def process_out(self, latent):
139139

140140
class StableAudio1(LatentFormat):
141141
latent_channels = 64
142+
143+
class Flux(SD3):
144+
def __init__(self):
145+
self.scale_factor = 0.3611
146+
self.shift_factor = 0.1159
147+
148+
def process_in(self, latent):
149+
return (latent - self.shift_factor) * self.scale_factor
150+
151+
def process_out(self, latent):
152+
return (latent / self.scale_factor) + self.shift_factor

comfy/ldm/flux/layers.py

Lines changed: 257 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,257 @@
1+
import math
2+
from dataclasses import dataclass
3+
4+
import torch
5+
from einops import rearrange
6+
from torch import Tensor, nn
7+
8+
from .math import attention, rope
9+
import comfy.ops
10+
11+
12+
class EmbedND(nn.Module):
13+
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
14+
super().__init__()
15+
self.dim = dim
16+
self.theta = theta
17+
self.axes_dim = axes_dim
18+
19+
def forward(self, ids: Tensor) -> Tensor:
20+
n_axes = ids.shape[-1]
21+
emb = torch.cat(
22+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
23+
dim=-3,
24+
)
25+
26+
return emb.unsqueeze(1)
27+
28+
29+
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
30+
"""
31+
Create sinusoidal timestep embeddings.
32+
:param t: a 1-D Tensor of N indices, one per batch element.
33+
These may be fractional.
34+
:param dim: the dimension of the output.
35+
:param max_period: controls the minimum frequency of the embeddings.
36+
:return: an (N, D) Tensor of positional embeddings.
37+
"""
38+
t = time_factor * t
39+
half = dim // 2
40+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
41+
t.device
42+
)
43+
44+
args = t[:, None].float() * freqs[None]
45+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
46+
if dim % 2:
47+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
48+
if torch.is_floating_point(t):
49+
embedding = embedding.to(t)
50+
return embedding
51+
52+
53+
class MLPEmbedder(nn.Module):
54+
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
55+
super().__init__()
56+
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
57+
self.silu = nn.SiLU()
58+
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
59+
60+
def forward(self, x: Tensor) -> Tensor:
61+
return self.out_layer(self.silu(self.in_layer(x)))
62+
63+
64+
class RMSNorm(torch.nn.Module):
65+
def __init__(self, dim: int, dtype=None, device=None, operations=None):
66+
super().__init__()
67+
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
68+
69+
def forward(self, x: Tensor):
70+
x_dtype = x.dtype
71+
x = x.float()
72+
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
73+
return (x * rrms).to(dtype=x_dtype) * comfy.ops.cast_to(self.scale, dtype=x_dtype, device=x.device)
74+
75+
76+
class QKNorm(torch.nn.Module):
77+
def __init__(self, dim: int, dtype=None, device=None, operations=None):
78+
super().__init__()
79+
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
80+
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
81+
82+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
83+
q = self.query_norm(q)
84+
k = self.key_norm(k)
85+
return q.to(v), k.to(v)
86+
87+
88+
class SelfAttention(nn.Module):
89+
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
90+
super().__init__()
91+
self.num_heads = num_heads
92+
head_dim = dim // num_heads
93+
94+
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
95+
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
96+
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
97+
98+
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
99+
qkv = self.qkv(x)
100+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
101+
q, k = self.norm(q, k, v)
102+
x = attention(q, k, v, pe=pe)
103+
x = self.proj(x)
104+
return x
105+
106+
107+
@dataclass
108+
class ModulationOut:
109+
shift: Tensor
110+
scale: Tensor
111+
gate: Tensor
112+
113+
114+
class Modulation(nn.Module):
115+
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
116+
super().__init__()
117+
self.is_double = double
118+
self.multiplier = 6 if double else 3
119+
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
120+
121+
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
122+
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
123+
124+
return (
125+
ModulationOut(*out[:3]),
126+
ModulationOut(*out[3:]) if self.is_double else None,
127+
)
128+
129+
130+
class DoubleStreamBlock(nn.Module):
131+
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None):
132+
super().__init__()
133+
134+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
135+
self.num_heads = num_heads
136+
self.hidden_size = hidden_size
137+
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
138+
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
139+
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
140+
141+
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
142+
self.img_mlp = nn.Sequential(
143+
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
144+
nn.GELU(approximate="tanh"),
145+
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
146+
)
147+
148+
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
149+
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
150+
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
151+
152+
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
153+
self.txt_mlp = nn.Sequential(
154+
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
155+
nn.GELU(approximate="tanh"),
156+
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
157+
)
158+
159+
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
160+
img_mod1, img_mod2 = self.img_mod(vec)
161+
txt_mod1, txt_mod2 = self.txt_mod(vec)
162+
163+
# prepare image for attention
164+
img_modulated = self.img_norm1(img)
165+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
166+
img_qkv = self.img_attn.qkv(img_modulated)
167+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
168+
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
169+
170+
# prepare txt for attention
171+
txt_modulated = self.txt_norm1(txt)
172+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
173+
txt_qkv = self.txt_attn.qkv(txt_modulated)
174+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
175+
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
176+
177+
# run actual attention
178+
q = torch.cat((txt_q, img_q), dim=2)
179+
k = torch.cat((txt_k, img_k), dim=2)
180+
v = torch.cat((txt_v, img_v), dim=2)
181+
182+
attn = attention(q, k, v, pe=pe)
183+
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
184+
185+
# calculate the img bloks
186+
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
187+
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
188+
189+
# calculate the txt bloks
190+
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
191+
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
192+
return img, txt
193+
194+
195+
class SingleStreamBlock(nn.Module):
196+
"""
197+
A DiT block with parallel linear layers as described in
198+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
199+
"""
200+
201+
def __init__(
202+
self,
203+
hidden_size: int,
204+
num_heads: int,
205+
mlp_ratio: float = 4.0,
206+
qk_scale: float | None = None,
207+
dtype=None,
208+
device=None,
209+
operations=None
210+
):
211+
super().__init__()
212+
self.hidden_dim = hidden_size
213+
self.num_heads = num_heads
214+
head_dim = hidden_size // num_heads
215+
self.scale = qk_scale or head_dim**-0.5
216+
217+
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
218+
# qkv and mlp_in
219+
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
220+
# proj and mlp_out
221+
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
222+
223+
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
224+
225+
self.hidden_size = hidden_size
226+
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
227+
228+
self.mlp_act = nn.GELU(approximate="tanh")
229+
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
230+
231+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
232+
mod, _ = self.modulation(vec)
233+
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
234+
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
235+
236+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
237+
q, k = self.norm(q, k, v)
238+
239+
# compute attention
240+
attn = attention(q, k, v, pe=pe)
241+
# compute activation in mlp stream, cat again and run second linear layer
242+
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
243+
return x + mod.gate * output
244+
245+
246+
class LastLayer(nn.Module):
247+
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
248+
super().__init__()
249+
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
250+
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
251+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
252+
253+
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
254+
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
255+
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
256+
x = self.linear(x)
257+
return x

comfy/ldm/flux/math.py

Lines changed: 29 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,29 @@
1+
import torch
2+
from einops import rearrange
3+
from torch import Tensor
4+
from comfy.ldm.modules.attention import optimized_attention
5+
6+
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
7+
q, k = apply_rope(q, k, pe)
8+
9+
heads = q.shape[1]
10+
x = optimized_attention(q, k, v, heads, skip_reshape=True)
11+
return x
12+
13+
14+
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
15+
assert dim % 2 == 0
16+
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
17+
omega = 1.0 / (theta**scale)
18+
out = torch.einsum("...n,d->...nd", pos, omega)
19+
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
20+
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
21+
return out.float()
22+
23+
24+
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
25+
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
26+
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
27+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
28+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
29+
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

0 commit comments

Comments
 (0)