|
| 1 | +import argparse |
| 2 | +import os |
| 3 | + |
| 4 | +import imageio |
| 5 | +import torch |
| 6 | +import torchvision.transforms.functional as F |
| 7 | +import tqdm |
| 8 | +from calculate_lpips import calculate_lpips |
| 9 | +from calculate_psnr import calculate_psnr |
| 10 | +from calculate_ssim import calculate_ssim |
| 11 | + |
| 12 | + |
| 13 | +def load_video(video_path): |
| 14 | + """ |
| 15 | + Load a video from the given path and convert it to a PyTorch tensor. |
| 16 | + """ |
| 17 | + # Read the video using imageio |
| 18 | + reader = imageio.get_reader(video_path, "ffmpeg") |
| 19 | + |
| 20 | + # Extract frames and convert to a list of tensors |
| 21 | + frames = [] |
| 22 | + for frame in reader: |
| 23 | + # Convert the frame to a tensor and permute the dimensions to match (C, H, W) |
| 24 | + frame_tensor = torch.tensor(frame).cuda().permute(2, 0, 1) |
| 25 | + frames.append(frame_tensor) |
| 26 | + |
| 27 | + # Stack the list of tensors into a single tensor with shape (T, C, H, W) |
| 28 | + video_tensor = torch.stack(frames) |
| 29 | + |
| 30 | + return video_tensor |
| 31 | + |
| 32 | + |
| 33 | +def resize_video(video, target_height, target_width): |
| 34 | + resized_frames = [] |
| 35 | + for frame in video: |
| 36 | + resized_frame = F.resize(frame, [target_height, target_width]) |
| 37 | + resized_frames.append(resized_frame) |
| 38 | + return torch.stack(resized_frames) |
| 39 | + |
| 40 | + |
| 41 | +def resize_gt_video(gt_video, gen_video): |
| 42 | + gen_video_shape = gen_video.shape |
| 43 | + T_gen, _, H_gen, W_gen = gen_video_shape |
| 44 | + T_eval, _, H_eval, W_eval = gt_video.shape |
| 45 | + |
| 46 | + if T_eval < T_gen: |
| 47 | + raise ValueError(f"Eval video time steps ({T_eval}) are less than generated video time steps ({T_gen}).") |
| 48 | + |
| 49 | + if H_eval < H_gen or W_eval < W_gen: |
| 50 | + # Resize the video maintaining the aspect ratio |
| 51 | + resize_height = max(H_gen, int(H_gen * (H_eval / W_eval))) |
| 52 | + resize_width = max(W_gen, int(W_gen * (W_eval / H_eval))) |
| 53 | + gt_video = resize_video(gt_video, resize_height, resize_width) |
| 54 | + # Recalculate the dimensions |
| 55 | + T_eval, _, H_eval, W_eval = gt_video.shape |
| 56 | + |
| 57 | + # Center crop |
| 58 | + start_h = (H_eval - H_gen) // 2 |
| 59 | + start_w = (W_eval - W_gen) // 2 |
| 60 | + cropped_video = gt_video[:T_gen, :, start_h : start_h + H_gen, start_w : start_w + W_gen] |
| 61 | + |
| 62 | + return cropped_video |
| 63 | + |
| 64 | + |
| 65 | +def get_video_ids(gt_video_dirs, gen_video_dirs): |
| 66 | + video_ids = [] |
| 67 | + for f in os.listdir(gt_video_dirs[0]): |
| 68 | + if f.endswith(f".mp4"): |
| 69 | + video_ids.append(f.replace(f".mp4", "")) |
| 70 | + video_ids.sort() |
| 71 | + |
| 72 | + for video_dir in gt_video_dirs + gen_video_dirs: |
| 73 | + tmp_video_ids = [] |
| 74 | + for f in os.listdir(video_dir): |
| 75 | + if f.endswith(f".mp4"): |
| 76 | + tmp_video_ids.append(f.replace(f".mp4", "")) |
| 77 | + tmp_video_ids.sort() |
| 78 | + if tmp_video_ids != video_ids: |
| 79 | + raise ValueError(f"Video IDs in {video_dir} are different.") |
| 80 | + return video_ids |
| 81 | + |
| 82 | + |
| 83 | +def get_videos(video_ids, gt_video_dirs, gen_video_dirs): |
| 84 | + gt_videos = {} |
| 85 | + generated_videos = {} |
| 86 | + |
| 87 | + for gt_video_dir in gt_video_dirs: |
| 88 | + tmp_gt_videos_tensor = [] |
| 89 | + for video_id in video_ids: |
| 90 | + gt_video = load_video(os.path.join(gt_video_dir, f"{video_id}.mp4")) |
| 91 | + tmp_gt_videos_tensor.append(gt_video) |
| 92 | + gt_videos[gt_video_dir] = tmp_gt_videos_tensor |
| 93 | + |
| 94 | + for generated_video_dir in gen_video_dirs: |
| 95 | + tmp_generated_videos_tensor = [] |
| 96 | + for video_id in video_ids: |
| 97 | + generated_video = load_video(os.path.join(generated_video_dir, f"{video_id}.mp4")) |
| 98 | + tmp_generated_videos_tensor.append(generated_video) |
| 99 | + generated_videos[generated_video_dir] = tmp_generated_videos_tensor |
| 100 | + |
| 101 | + return gt_videos, generated_videos |
| 102 | + |
| 103 | + |
| 104 | +def print_results(lpips_results, psnr_results, ssim_results, gt_video_dirs, gen_video_dirs): |
| 105 | + out_str = "" |
| 106 | + |
| 107 | + for gt_video_dir in gt_video_dirs: |
| 108 | + for generated_video_dir in gen_video_dirs: |
| 109 | + if gt_video_dir == generated_video_dir: |
| 110 | + continue |
| 111 | + lpips = sum(lpips_results[gt_video_dir][generated_video_dir]) / len( |
| 112 | + lpips_results[gt_video_dir][generated_video_dir] |
| 113 | + ) |
| 114 | + psnr = sum(psnr_results[gt_video_dir][generated_video_dir]) / len( |
| 115 | + psnr_results[gt_video_dir][generated_video_dir] |
| 116 | + ) |
| 117 | + ssim = sum(ssim_results[gt_video_dir][generated_video_dir]) / len( |
| 118 | + ssim_results[gt_video_dir][generated_video_dir] |
| 119 | + ) |
| 120 | + out_str += f"\ngt: {gt_video_dir} -> gen: {generated_video_dir}, lpips: {lpips:.4f}, psnr: {psnr:.4f}, ssim: {ssim:.4f}" |
| 121 | + |
| 122 | + return out_str |
| 123 | + |
| 124 | + |
| 125 | +def main(args): |
| 126 | + device = "cuda" |
| 127 | + gt_video_dirs = args.gt_video_dirs |
| 128 | + gen_video_dirs = args.gen_video_dirs |
| 129 | + |
| 130 | + video_ids = get_video_ids(gt_video_dirs, gen_video_dirs) |
| 131 | + print(f"Find {len(video_ids)} videos") |
| 132 | + |
| 133 | + prompt_interval = 1 |
| 134 | + batch_size = 8 |
| 135 | + calculate_lpips_flag, calculate_psnr_flag, calculate_ssim_flag = True, True, True |
| 136 | + |
| 137 | + lpips_results = {} |
| 138 | + psnr_results = {} |
| 139 | + ssim_results = {} |
| 140 | + for gt_video_dir in gt_video_dirs: |
| 141 | + lpips_results[gt_video_dir] = {} |
| 142 | + psnr_results[gt_video_dir] = {} |
| 143 | + ssim_results[gt_video_dir] = {} |
| 144 | + for generated_video_dir in gen_video_dirs: |
| 145 | + lpips_results[gt_video_dir][generated_video_dir] = [] |
| 146 | + psnr_results[gt_video_dir][generated_video_dir] = [] |
| 147 | + ssim_results[gt_video_dir][generated_video_dir] = [] |
| 148 | + |
| 149 | + total_len = len(video_ids) // batch_size + (1 if len(video_ids) % batch_size != 0 else 0) |
| 150 | + |
| 151 | + for idx in tqdm.tqdm(range(total_len)): |
| 152 | + video_ids_batch = video_ids[idx * batch_size : (idx + 1) * batch_size] |
| 153 | + gt_videos, generated_videos = get_videos(video_ids_batch, gt_video_dirs, gen_video_dirs) |
| 154 | + |
| 155 | + for gt_video_dir, gt_videos_tensor in gt_videos.items(): |
| 156 | + for generated_video_dir, generated_videos_tensor in generated_videos.items(): |
| 157 | + if gt_video_dir == generated_video_dir: |
| 158 | + continue |
| 159 | + |
| 160 | + if not isinstance(gt_videos_tensor, torch.Tensor): |
| 161 | + for i in range(len(gt_videos_tensor)): |
| 162 | + gt_videos_tensor[i] = resize_gt_video(gt_videos_tensor[i], generated_videos_tensor[0]) |
| 163 | + gt_videos_tensor = (torch.stack(gt_videos_tensor) / 255.0).cpu() |
| 164 | + |
| 165 | + generated_videos_tensor = (torch.stack(generated_videos_tensor) / 255.0).cpu() |
| 166 | + |
| 167 | + if calculate_lpips_flag: |
| 168 | + result = calculate_lpips(gt_videos_tensor, generated_videos_tensor, device=device) |
| 169 | + result = result["value"].values() |
| 170 | + result = float(sum(result) / len(result)) |
| 171 | + lpips_results[gt_video_dir][generated_video_dir].append(result) |
| 172 | + |
| 173 | + if calculate_psnr_flag: |
| 174 | + result = calculate_psnr(gt_videos_tensor, generated_videos_tensor) |
| 175 | + result = result["value"].values() |
| 176 | + result = float(sum(result) / len(result)) |
| 177 | + psnr_results[gt_video_dir][generated_video_dir].append(result) |
| 178 | + |
| 179 | + if calculate_ssim_flag: |
| 180 | + result = calculate_ssim(gt_videos_tensor, generated_videos_tensor) |
| 181 | + result = result["value"].values() |
| 182 | + result = float(sum(result) / len(result)) |
| 183 | + ssim_results[gt_video_dir][generated_video_dir].append(result) |
| 184 | + |
| 185 | + if (idx + 1) % prompt_interval == 0: |
| 186 | + out_str = print_results(lpips_results, psnr_results, ssim_results, gt_video_dirs, gen_video_dirs) |
| 187 | + print(f"Processed {idx + 1} / {total_len} videos. {out_str}") |
| 188 | + |
| 189 | + out_str = print_results(lpips_results, psnr_results, ssim_results, gt_video_dirs, gen_video_dirs) |
| 190 | + |
| 191 | + # save |
| 192 | + with open(f"./batch_eval.txt", "w+") as f: |
| 193 | + f.write(out_str) |
| 194 | + |
| 195 | + print(f"Processed all videos. {out_str}") |
| 196 | + |
| 197 | + |
| 198 | +if __name__ == "__main__": |
| 199 | + parser = argparse.ArgumentParser() |
| 200 | + parser.add_argument("--gt_video_dirs", type=str, nargs="+") |
| 201 | + parser.add_argument("--gen_video_dirs", type=str, nargs="+") |
| 202 | + |
| 203 | + args = parser.parse_args() |
| 204 | + |
| 205 | + main(args) |
0 commit comments