You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: CONTENTS.md
+1Lines changed: 1 addition & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -46,6 +46,7 @@
46
46
| [**ProxyNCALoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#proxyncaloss) | [No Fuss Distance Metric Learning using Proxies](https://arxiv.org/pdf/1703.07464.pdf)
47
47
| [**RankedListLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#rankedlistloss) | [Ranked List Loss for Deep Metric Learning](https://arxiv.org/abs/1903.03238)
48
48
| [**SignalToNoiseRatioContrastiveLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#signaltonoiseratiocontrastiveloss) | [Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning](http://openaccess.thecvf.com/content_CVPR_2019/papers/Yuan_Signal-To-Noise_Ratio_A_Robust_Distance_Metric_for_Deep_Metric_Learning_CVPR_2019_paper.pdf)
49
+
| [**SmoothAPLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#smoothaploss) | [Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval](https://arxiv.org/abs/2007.12163)
49
50
| [**SoftTripleLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#softtripleloss) | [SoftTriple Loss: Deep Metric Learning Without Triplet Sampling](http://openaccess.thecvf.com/content_ICCV_2019/papers/Qian_SoftTriple_Loss_Deep_Metric_Learning_Without_Triplet_Sampling_ICCV_2019_paper.pdf)
50
51
| [**SphereFaceLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#spherefaceloss) | [SphereFace: Deep Hypersphere Embedding for Face Recognition](https://arxiv.org/pdf/1704.08063.pdf)
51
52
| [**SubCenterArcFaceLoss**](https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#subcenterarcfaceloss) | [Sub-center ArcFace: Boosting Face Recognition by Large-scale Noisy Web Faces](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123560715.pdf)
0 commit comments