|
1 | 1 | import unittest
|
2 | 2 | from trlx.data.configs import TRLConfig
|
3 | 3 | from trlx.model.nn.ppo_models import GPTHydraHeadWithValueModel
|
| 4 | +from trlx.utils.modeling import RunningMoments |
4 | 5 | from transformers import AutoTokenizer
|
5 | 6 | import torch
|
6 | 7 |
|
@@ -44,3 +45,22 @@ def test_forward(self):
|
44 | 45 | logits_diff = torch.sum(unfrozen_logits - frozen_logits).item()
|
45 | 46 | self.assertEqual(hs_diff, 0)
|
46 | 47 | self.assertEqual(logits_diff, 0)
|
| 48 | + |
| 49 | +class TestStatistics(unittest.TestCase): |
| 50 | + @classmethod |
| 51 | + def setUpClass(cls): |
| 52 | + cls.m = RunningMoments() |
| 53 | + cls.a1 = torch.arange(100, dtype=float) |
| 54 | + cls.a2 = torch.ones(100, dtype=float) |
| 55 | + cls.a3 = torch.exp(torch.arange(10, dtype=float)) |
| 56 | + cls.a4 = torch.tensor([-10, -1, 0, 1, 10], dtype=float) |
| 57 | + |
| 58 | + def test_running_moments(self): |
| 59 | + assert torch.isclose(self.m.update(self.a1)[1], self.a1.std(unbiased=True), atol=1e-6) |
| 60 | + assert torch.isclose(self.m.update(self.a2)[1], self.a2.std(unbiased=True), atol=1e-6) |
| 61 | + assert torch.isclose(self.m.update(self.a3)[1], self.a3.std(unbiased=True), atol=1e-6) |
| 62 | + assert torch.isclose(self.m.update(self.a4)[1], self.a4.std(unbiased=True), atol=1e-6) |
| 63 | + |
| 64 | + a = torch.hstack((self.a1, self.a2, self.a3, self.a4)) |
| 65 | + assert torch.isclose(self.m.mean, a.mean(), atol=1e-6) |
| 66 | + assert torch.isclose(self.m.std, a.std(unbiased=True), atol=1e-6) |
0 commit comments