|
205 | 205 | "'''", |
206 | 206 | "model = YOLO(\"yolov${1|8,5,9,10|}${2|n,s,m,l,x,c,e|}${3|.,-cls.,-seg.,-obb.,-pose.,-world.,-worldv2.|}pt\")", |
207 | 207 | "results: list = model.train(", |
208 | | - "data=${4:\"coco8.yaml\"}, # (str, optional) path to data file, i.e. coco8.yaml", |
209 | | - "epochs=${5:100}, # (int) number of epochs to train for", |
210 | | - "time=${6:None}, # (float, optional) number of hours to train for, overrides epochs if supplied", |
211 | | - "patience=${7:100}, # (int) epochs to wait for no observable improvement for early stopping of training", |
212 | | - "batch=${8:16}, # (int) number of images per batch (-1 for AutoBatch)", |
213 | | - "imgsz=${9:640}, # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes", |
214 | | - "save=${10:True}, # (bool) save train checkpoints and predict results", |
215 | | - "save_period=${11:-1}, # (int) Save checkpoint every x epochs (disabled if < 1)", |
216 | | - "cache=${12:False}, # (bool) True/ram, disk or False. Use cache for data loading", |
217 | | - "device=${13:None}, # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu", |
218 | | - "workers=${14:8}, # (int) number of worker threads for data loading (per RANK if DDP)", |
219 | | - "project=${15:None}, # (str, optional) project name", |
220 | | - "name=${16:None}, # (str, optional) experiment name, results saved to 'project/name' directory", |
221 | | - "exist_ok=${17:False}, # (bool) whether to overwrite existing experiment", |
222 | | - "val=${18:True}, # (bool) validate/test during training", |
223 | | - "pretrained=${19:True}, # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)", |
224 | | - "optimizer=\"${20|SGD,Adam,Adamax,AdamW,NAdam,RAdam,RMSProp,auto|}\", # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]", |
225 | | - "verbose=${21:True}, # (bool) whether to print verbose output", |
226 | | - "seed=${22:0}, # (int) random seed for reproducibility", |
227 | | - "deterministic=${23:True}, # (bool) whether to enable deterministic mode", |
228 | | - "single_cls=${24:False}, # (bool) train multi-class data as single-class", |
229 | | - "rect=${25:False}, # (bool) rectangular training if mode='train' or rectangular validation if mode='val'", |
230 | | - "cos_lr=${26:False}, # (bool) use cosine learning rate scheduler", |
231 | | - "close_mosaic=${27:10}, # (int) disable mosaic augmentation for final epochs (0 to disable)", |
232 | | - "resume=${28:False}, # (bool) resume training from last checkpoint", |
233 | | - "amp=${29:True}, # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check", |
234 | | - "fraction=${30:1.0}, # (float) dataset fraction to train on (default is 1.0, all images in train set)", |
235 | | - "profile=${31:False}, # (bool) profile ONNX and TensorRT speeds during training for loggers", |
236 | | - "freeze=${32:None}, # (int | list, optional) freeze first n layers, or freeze list of layer indices during training", |
237 | | - "multi_scale=${33:False}, # (bool) Whether to use multiscale during training", |
238 | | - "plots=${34:True} # (bool) save plots and images during train/val", |
239 | | - "# Segmentation", |
240 | | - "overlap_mask=${35:True}, # (bool) masks should overlap during training (segment train only)", |
241 | | - "mask_ratio=${36:4}, # (int) mask downsample ratio (segment train only)", |
242 | | - "# Classification", |
243 | | - "dropout=${37:0.0}, # (float) use dropout regularization (classify train only)", |
244 | | - "# Hyperparameters", |
245 | | - "lr0=${38:0.01}, # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)", |
246 | | - "lrf=${39:0.01}, # (float) final learning rate (lr0 * lrf)", |
247 | | - "momentum=${40:0.937}, # (float) SGD momentum/Adam beta1", |
248 | | - "weight_decay=${41:0.0005}, # (float) optimizer weight decay 5e-4", |
249 | | - "warmup_epochs=${42:3.0}, # (float) warmup epochs (fractions ok)", |
250 | | - "warmup_momentum=${43:0.8}, # (float) warmup initial momentum", |
251 | | - "warmup_bias_lr=${44:0.1}, # (float) warmup initial bias lr", |
252 | | - "box=${45:7.5}, # (float) box loss gain", |
253 | | - "cls=${46:0.5}, # (float) cls loss gain (scale with pixels)", |
254 | | - "dfl=${47:1.5}, # (float) dfl loss gain", |
255 | | - "pose=${48:12.0}, # (float) pose loss gain", |
256 | | - "kobj=${49:1.0}, # (float) keypoint obj loss gain", |
257 | | - "label_smoothing=${50:0.0}, # (float) label smoothing (fraction)", |
258 | | - "nbs=${51:64}, # (int) nominal batch size", |
259 | | - "hsv_h=${52:0.015}, # (float) image HSV-Hue augmentation (fraction)", |
260 | | - "hsv_s=${53:0.7}, # (float) image HSV-Saturation augmentation (fraction)", |
261 | | - "hsv_v=${54:0.4}, # (float) image HSV-Value augmentation (fraction)", |
262 | | - "degrees=${55:0.0}, # (float) image rotation (+/- deg)", |
263 | | - "translate=${56:0.1}, # (float) image translation (+/- fraction)", |
264 | | - "scale=${57:0.5}, # (float) image scale (+/- gain)", |
265 | | - "shear=${58:0.0}, # (float) image shear (+/- deg)", |
266 | | - "perspective=${59:0.0}, # (float) image perspective (+/- fraction), range 0-0.001", |
267 | | - "flipud=${60:0.0}, # (float) image flip up-down (probability)", |
268 | | - "fliplr=${61:0.5}, # (float) image flip left-right (probability)", |
269 | | - "bgr=${62:0.0}, # (float) image channel BGR (probability)", |
270 | | - "mosaic=${63:1.0}, # (float) image mosaic (probability)", |
271 | | - "mixup=${64:0.0}, # (float) image mixup (probability)", |
272 | | - "copy_paste=${65:0.0}, # (float) segment copy-paste (probability)", |
273 | | - "auto_augment=\"${66|randaugment,autoaugment,augmix|}\", # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)", |
274 | | - "erasing=${67:0.4}, # (float) probability of random erasing during classification training (0-0.9), 0 means no erasing, must be less than 1.0.", |
275 | | - "crop_fraction=${68:1.0}, # (float) image crop fraction for classification (0.1-1), 1.0 means no crop, must be greater than 0.", |
| 208 | + " data=${4:\"coco8.yaml\"}, # (str, optional) path to data file, i.e. coco8.yaml", |
| 209 | + " epochs=${5:100}, # (int) number of epochs to train for", |
| 210 | + " time=${6:None}, # (float, optional) number of hours to train for, overrides epochs if supplied", |
| 211 | + " patience=${7:100}, # (int) epochs to wait for no observable improvement for early stopping of training", |
| 212 | + " batch=${8:16}, # (int) number of images per batch (-1 for AutoBatch)", |
| 213 | + " imgsz=${9:640}, # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes", |
| 214 | + " save=${10:True}, # (bool) save train checkpoints and predict results", |
| 215 | + " save_period=${11:-1}, # (int) Save checkpoint every x epochs (disabled if < 1)", |
| 216 | + " cache=${12:False}, # (bool) True/ram, disk or False. Use cache for data loading", |
| 217 | + " device=${13:None}, # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu", |
| 218 | + " workers=${14:8}, # (int) number of worker threads for data loading (per RANK if DDP)", |
| 219 | + " project=${15:None}, # (str, optional) project name", |
| 220 | + " name=${16:None}, # (str, optional) experiment name, results saved to 'project/name' directory", |
| 221 | + " exist_ok=${17:False}, # (bool) whether to overwrite existing experiment", |
| 222 | + " val=${18:True}, # (bool) validate/test during training", |
| 223 | + " pretrained=${19:True}, # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)", |
| 224 | + " optimizer=\"${20|SGD,Adam,Adamax,AdamW,NAdam,RAdam,RMSProp,auto|}\", # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]", |
| 225 | + " verbose=${21:True}, # (bool) whether to print verbose output", |
| 226 | + " seed=${22:0}, # (int) random seed for reproducibility", |
| 227 | + " deterministic=${23:True}, # (bool) whether to enable deterministic mode", |
| 228 | + " single_cls=${24:False}, # (bool) train multi-class data as single-class", |
| 229 | + " rect=${25:False}, # (bool) rectangular training if mode='train' or rectangular validation if mode='val'", |
| 230 | + " cos_lr=${26:False}, # (bool) use cosine learning rate scheduler", |
| 231 | + " close_mosaic=${27:10}, # (int) disable mosaic augmentation for final epochs (0 to disable)", |
| 232 | + " resume=${28:False}, # (bool) resume training from last checkpoint", |
| 233 | + " amp=${29:True}, # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check", |
| 234 | + " fraction=${30:1.0}, # (float) dataset fraction to train on (default is 1.0, all images in train set)", |
| 235 | + " profile=${31:False}, # (bool) profile ONNX and TensorRT speeds during training for loggers", |
| 236 | + " freeze=${32:None}, # (int | list, optional) freeze first n layers, or freeze list of layer indices during training", |
| 237 | + " multi_scale=${33:False}, # (bool) Whether to use multiscale during training", |
| 238 | + " plots=${34:True}, # (bool) save plots and images during train/val", |
| 239 | + " # Segmentation", |
| 240 | + " overlap_mask=${35:True}, # (bool) masks should overlap during training (segment train only)", |
| 241 | + " mask_ratio=${36:4}, # (int) mask downsample ratio (segment train only)", |
| 242 | + " # Classification", |
| 243 | + " dropout=${37:0.0}, # (float) use dropout regularization (classify train only)", |
| 244 | + " # Hyperparameters", |
| 245 | + " lr0=${38:0.01}, # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)", |
| 246 | + " lrf=${39:0.01}, # (float) final learning rate (lr0 * lrf)", |
| 247 | + " momentum=${40:0.937}, # (float) SGD momentum/Adam beta1", |
| 248 | + " weight_decay=${41:0.0005}, # (float) optimizer weight decay 5e-4", |
| 249 | + " warmup_epochs=${42:3.0}, # (float) warmup epochs (fractions ok)", |
| 250 | + " warmup_momentum=${43:0.8}, # (float) warmup initial momentum", |
| 251 | + " warmup_bias_lr=${44:0.1}, # (float) warmup initial bias lr", |
| 252 | + " box=${45:7.5}, # (float) box loss gain", |
| 253 | + " cls=${46:0.5}, # (float) cls loss gain (scale with pixels)", |
| 254 | + " dfl=${47:1.5}, # (float) dfl loss gain", |
| 255 | + " pose=${48:12.0}, # (float) pose loss gain", |
| 256 | + " kobj=${49:1.0}, # (float) keypoint obj loss gain", |
| 257 | + " label_smoothing=${50:0.0}, # (float) label smoothing (fraction)", |
| 258 | + " nbs=${51:64}, # (int) nominal batch size", |
| 259 | + " hsv_h=${52:0.015}, # (float) image HSV-Hue augmentation (fraction)", |
| 260 | + " hsv_s=${53:0.7}, # (float) image HSV-Saturation augmentation (fraction)", |
| 261 | + " hsv_v=${54:0.4}, # (float) image HSV-Value augmentation (fraction)", |
| 262 | + " degrees=${55:0.0}, # (float) image rotation (+/- deg)", |
| 263 | + " translate=${56:0.1}, # (float) image translation (+/- fraction)", |
| 264 | + " scale=${57:0.5}, # (float) image scale (+/- gain)", |
| 265 | + " shear=${58:0.0}, # (float) image shear (+/- deg)", |
| 266 | + " perspective=${59:0.0}, # (float) image perspective (+/- fraction), range 0-0.001", |
| 267 | + " flipud=${60:0.0}, # (float) image flip up-down (probability)", |
| 268 | + " fliplr=${61:0.5}, # (float) image flip left-right (probability)", |
| 269 | + " bgr=${62:0.0}, # (float) image channel BGR (probability)", |
| 270 | + " mosaic=${63:1.0}, # (float) image mosaic (probability)", |
| 271 | + " mixup=${64:0.0}, # (float) image mixup (probability)", |
| 272 | + " copy_paste=${65:0.0}, # (float) segment copy-paste (probability)", |
| 273 | + " auto_augment=\"${66|randaugment,autoaugment,augmix|}\", # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)", |
| 274 | + " erasing=${67:0.4}, # (float) probability of random erasing during classification training (0-0.9), 0 means no erasing, must be less than 1.0.", |
| 275 | + " crop_fraction=${68:1.0}, # (float) image crop fraction for classification (0.1-1), 1.0 means no crop, must be greater than 0.", |
276 | 276 | ")", |
277 | 277 | "# reference https://docs.ultralytics.com/modes/predict/" |
278 | 278 | ], |
|
0 commit comments