|
| 1 | +use std::collections::BTreeMap; |
| 2 | + |
| 3 | +use linalg::Vector; |
| 4 | + |
| 5 | +fn xlogy(x: f64, y: f64) -> f64 { |
| 6 | + if x == 0. { |
| 7 | + 0. |
| 8 | + } else { |
| 9 | + x * y.ln() |
| 10 | + } |
| 11 | +} |
| 12 | + |
| 13 | +/// Count target label frequencies |
| 14 | +fn freq(labels: &Vector<usize>) -> (Vector<usize>, Vector<usize>) { |
| 15 | + let mut map: BTreeMap<usize, usize> = BTreeMap::new(); |
| 16 | + for l in labels { |
| 17 | + let e = map.entry(*l).or_insert(0); |
| 18 | + *e += 1; |
| 19 | + } |
| 20 | + |
| 21 | + let mut uniques: Vec<usize> = Vec::with_capacity(map.len()); |
| 22 | + let mut counts: Vec<usize> = Vec::with_capacity(map.len()); |
| 23 | + for (&k, &v) in map.iter() { |
| 24 | + uniques.push(k); |
| 25 | + counts.push(v); |
| 26 | + } |
| 27 | + (Vector::new(uniques), Vector::new(counts)) |
| 28 | +} |
| 29 | + |
| 30 | +pub fn label_counts(labels: &Vector<usize>, n_classes: usize) -> Vector<f64> { |
| 31 | + // ToDo: make this private |
| 32 | + debug_assert!(n_classes >= 1); |
| 33 | + debug_assert!(*labels.iter().max().unwrap() <= n_classes - 1); |
| 34 | + |
| 35 | + let mut counts: Vec<f64> = vec![0.0f64; n_classes]; |
| 36 | + |
| 37 | + unsafe { |
| 38 | + for &label in labels.iter() { |
| 39 | + *counts.get_unchecked_mut(label) += 1.; |
| 40 | + } |
| 41 | + } |
| 42 | + Vector::new(counts) |
| 43 | +} |
| 44 | + |
| 45 | +/// Split criterias |
| 46 | +#[derive(Debug, Clone)] |
| 47 | +pub enum Metrics { |
| 48 | + // ToDo: remove clone |
| 49 | + |
| 50 | + /// Gini impurity |
| 51 | + Gini, |
| 52 | + /// Information gain |
| 53 | + Entropy |
| 54 | +} |
| 55 | + |
| 56 | +impl Metrics { |
| 57 | + |
| 58 | + /// calculate metrics from target labels |
| 59 | + pub fn from_labels(&self, labels: &Vector<usize>, n_classes: usize) -> f64 { |
| 60 | + let counts = label_counts(labels, n_classes); |
| 61 | + let sum: f64 = labels.size() as f64; |
| 62 | + let probas: Vector<f64> = counts / sum; |
| 63 | + self.from_probas(&probas.data()) |
| 64 | + } |
| 65 | + |
| 66 | + /// calculate metrics from label probabilities |
| 67 | + pub fn from_probas(&self, probas: &[f64]) -> f64 { |
| 68 | + match self { |
| 69 | + &Metrics::Entropy => { |
| 70 | + let res: f64 = probas.iter().map(|&x| xlogy(x, x)).sum(); |
| 71 | + - res |
| 72 | + }, |
| 73 | + &Metrics::Gini => { |
| 74 | + let res: f64 = probas.iter().map(|&x| x * x).sum(); |
| 75 | + 1.0 - res |
| 76 | + } |
| 77 | + } |
| 78 | + } |
| 79 | +} |
| 80 | + |
| 81 | +pub struct Splitter { |
| 82 | + total_counts: Vec<f64>, |
| 83 | + sorter: Vec<(f64, usize)> |
| 84 | +} |
| 85 | + |
| 86 | +impl Splitter { |
| 87 | + pub fn new(features: &Vec<f64>, target: &Vector<usize>, |
| 88 | + total_counts: &Vec<f64>) -> Self { |
| 89 | + |
| 90 | + debug_assert!(features.len() == target.size()); |
| 91 | + debug_assert!(features.len() > 0); |
| 92 | + |
| 93 | + let mut sorter: Vec<(f64, usize)> = Vec::with_capacity(features.len()); |
| 94 | + for (&f, &t) in features.iter().zip(target.iter()) { |
| 95 | + sorter.push((f, t)); |
| 96 | + } |
| 97 | + sorter.sort_by(|x, y| x.0.partial_cmp(&y.0).unwrap()); |
| 98 | + |
| 99 | + Splitter { |
| 100 | + total_counts: total_counts.clone(), |
| 101 | + sorter: sorter |
| 102 | + } |
| 103 | + } |
| 104 | + |
| 105 | + pub fn get_max_splits(&self, metric: &Metrics) -> Vec<(f64, f64)> { |
| 106 | + let (mut prev_val, prev_label) = unsafe { *self.sorter.get_unchecked(0) }; |
| 107 | + let mut left_counts = vec![0.0f64; self.total_counts.len()]; |
| 108 | + unsafe { |
| 109 | + *left_counts.get_unchecked_mut(prev_label) += 1.; |
| 110 | + } |
| 111 | + |
| 112 | + // ToDo: compare perf whether to store total as f64 |
| 113 | + let mut left_total: f64 = 1.0f64; |
| 114 | + let mut right_counts: Vec<f64> = self.total_counts.iter() |
| 115 | + .zip(left_counts.iter()) |
| 116 | + .map(|(&t, &c)| t - c) |
| 117 | + .collect(); |
| 118 | + let mut right_total: f64 = (self.sorter.len() - 1) as f64; |
| 119 | + |
| 120 | + // stores tuple of split value and criterion |
| 121 | + let mut res: Vec<(f64, f64)> = Vec::with_capacity(self.sorter.len()); |
| 122 | + |
| 123 | + for &(current_val, current_label) in self.sorter.iter().skip(1) { |
| 124 | + if prev_val != current_val { |
| 125 | + let split = (prev_val + current_val) / 2.0f64; |
| 126 | + let lp: Vec<f64> = left_counts.iter().map(|&x| x / left_total).collect(); |
| 127 | + let rp: Vec<f64> = right_counts.iter().map(|&x| x / right_total).collect(); |
| 128 | + let lc = metric.from_probas(&lp) * left_total; |
| 129 | + let rc = metric.from_probas(&rp) * right_total; |
| 130 | + res.push((split, lc + rc)); |
| 131 | + } |
| 132 | + |
| 133 | + unsafe { |
| 134 | + *left_counts.get_unchecked_mut(current_label) += 1.0f64; |
| 135 | + *right_counts.get_unchecked_mut(current_label) -= 1.0f64; |
| 136 | + } |
| 137 | + left_total += 1.0f64; |
| 138 | + right_total -= 1.0f64; |
| 139 | + |
| 140 | + prev_val = current_val; |
| 141 | + } |
| 142 | + res |
| 143 | + } |
| 144 | +} |
| 145 | + |
| 146 | +#[cfg(test)] |
| 147 | +mod tests { |
| 148 | + |
| 149 | + use linalg::Vector; |
| 150 | + |
| 151 | + use super::{xlogy, freq, Metrics, Splitter}; |
| 152 | + |
| 153 | + #[test] |
| 154 | + fn test_xlogy() { |
| 155 | + assert_eq!(xlogy(3., 8.), 6.2383246250395068); |
| 156 | + assert_eq!(xlogy(0., 100.), 0.); |
| 157 | + } |
| 158 | + |
| 159 | + #[test] |
| 160 | + fn test_freq() { |
| 161 | + let (uniques, counts) = freq(&Vector::new(vec![1, 2, 3, 1, 2, 4])); |
| 162 | + assert_eq!(uniques, Vector::new(vec![1, 2, 3, 4])); |
| 163 | + assert_eq!(counts, Vector::new(vec![2, 2, 1, 1])); |
| 164 | + |
| 165 | + let (uniques, counts) = freq(&Vector::new(vec![1, 2, 2, 2, 2])); |
| 166 | + assert_eq!(uniques, Vector::new(vec![1, 2])); |
| 167 | + assert_eq!(counts, Vector::new(vec![1, 4])); |
| 168 | + } |
| 169 | + |
| 170 | + #[test] |
| 171 | + fn test_entropy() { |
| 172 | + assert_eq!(Metrics::Entropy.from_probas(&vec![1.]), 0.); |
| 173 | + assert_eq!(Metrics::Entropy.from_probas(&vec![1., 0., 0.]), 0.); |
| 174 | + assert_eq!(Metrics::Entropy.from_probas(&vec![0.5, 0.5]), 0.69314718055994529); |
| 175 | + assert_eq!(Metrics::Entropy.from_probas(&vec![1. / 3., 1. / 3., 1. / 3.]), 1.0986122886681096); |
| 176 | + assert_eq!(Metrics::Entropy.from_probas(&vec![0.4, 0.3, 0.3]), 1.0888999753452238); |
| 177 | + } |
| 178 | + |
| 179 | + #[test] |
| 180 | + fn test_gini_from_probas() { |
| 181 | + assert_eq!(Metrics::Gini.from_probas(&vec![1., 0., 0.]), 0.); |
| 182 | + assert_eq!(Metrics::Gini.from_probas(&vec![1. / 3., 1. / 3., 1. / 3.]), 0.6666666666666667); |
| 183 | + assert_eq!(Metrics::Gini.from_probas(&vec![0., 1. / 46., 45. / 46.]), 0.04253308128544431); |
| 184 | + assert_eq!(Metrics::Gini.from_probas(&vec![0., 49. / 54., 5. / 54.]), 0.16803840877914955); |
| 185 | + } |
| 186 | + |
| 187 | + #[test] |
| 188 | + fn test_entropy_from_labels() { |
| 189 | + assert_eq!(Metrics::Entropy.from_labels(&Vector::new(vec![0, 1, 2]), 3), 1.0986122886681096); |
| 190 | + assert_eq!(Metrics::Entropy.from_labels(&Vector::new(vec![0, 0, 1, 1]), 2), 0.69314718055994529); |
| 191 | + } |
| 192 | + |
| 193 | + #[test] |
| 194 | + fn test_gini_from_labels() { |
| 195 | + assert_eq!(Metrics::Gini.from_labels(&Vector::new(vec![1, 1, 1]), 2), 0.); |
| 196 | + assert_eq!(Metrics::Gini.from_labels(&Vector::new(vec![0, 0, 0]), 2), 0.); |
| 197 | + assert_eq!(Metrics::Gini.from_labels(&Vector::new(vec![0, 0, 1, 1, 2, 2]), 3), 0.6666666666666667); |
| 198 | + } |
| 199 | + |
| 200 | + #[test] |
| 201 | + fn test_splitter() { |
| 202 | + let features: Vec<f64> = vec![1.0, 2.0, 1.0, 2.0, 3.0, 4.0]; |
| 203 | + let labels: Vector<usize> = Vector::new(vec![0, 1, 1, 1, 0, 0]); |
| 204 | + |
| 205 | + let s = Splitter::new(&features, &labels, &vec![3., 3.]); |
| 206 | + let res = s.get_max_splits(&Metrics::Gini); |
| 207 | + assert_eq!(res.len(), 3); |
| 208 | + |
| 209 | + let exp = Metrics::Gini.from_labels(&Vector::new(vec![0, 1]), 2) * 2. + |
| 210 | + Metrics::Gini.from_labels(&Vector::new(vec![0, 0, 1, 1]), 2) * 4.; |
| 211 | + assert_eq!(res[0], (1.5, exp)); |
| 212 | + |
| 213 | + let exp = Metrics::Gini.from_labels(&Vector::new(vec![0, 1, 1, 1]), 2) * 4. + |
| 214 | + Metrics::Gini.from_labels(&Vector::new(vec![0, 0]), 2) * 2.; |
| 215 | + assert_eq!(res[1], (2.5, exp)); |
| 216 | + |
| 217 | + let exp = Metrics::Gini.from_labels(&Vector::new(vec![0, 0, 1, 1, 1]), 2) * 5. + |
| 218 | + Metrics::Gini.from_labels(&Vector::new(vec![0]), 2) * 1.; |
| 219 | + assert_eq!(res[2], (3.5, exp)); |
| 220 | + } |
| 221 | +} |
0 commit comments